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Abstract
Background  Results regarding whether it is essential to incorporate genetic variants into risk prediction models for 
esophageal cancer (EC) are inconsistent due to the different genetic backgrounds of the populations studied. We 
aimed to identify single-nucleotide polymorphisms (SNPs) associated with EC among the Chinese population and to 
evaluate the performance of genetic and non-genetic factors in a risk model for developing EC.

Methods  A meta-analysis was performed to systematically identify potential SNPs, which were further verified by 
a case-control study. Three risk models were developed: a genetic model with weighted genetic risk score (wGRS) 
based on promising SNPs, a non-genetic model with environmental risk factors, and a combined model including 
both genetic and non-genetic factors. The discrimination ability of the models was compared using the area under 
the receiver operating characteristic curve (AUC) and the net reclassification index (NRI). The Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) were used to assess the goodness-of-fit of the models.

Results  Five promising SNPs were ultimately utilized to calculate the wGRS. Individuals in the highest quartile of 
the wGRS had a 4.93-fold (95% confidence interval [CI]: 2.59 to 9.38) increased risk of EC compared with those in the 
lowest quartile. The genetic or non-genetic model identified EC patients with AUCs ranging from 0.618 to 0.650. 
The combined model had an AUC of 0.707 (95% CI: 0.669 to 0.743) and was the best-fitting model (AIC = 750.55, 
BIC = 759.34). The NRI improved when the wGRS was added to the risk model with non-genetic factors only 
(NRI = 0.082, P = 0.037).

Conclusions  Among the three risk models for EC, the combined model showed optimal predictive performance and 
can help to identify individuals at risk of EC for tailored preventive measures.
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Background
Esophageal cancer (EC) remains a public health issue 
globally. EC was the seventh most common cancer in 
incidence and ranked as the sixth leading cause of can-
cer-related mortality worldwide in 2020 [1]. In China, 
new cases of EC and related deaths account for 53.70% 
and 55.35% of the world’s totals, respectively [1, 2]. More-
over, the overall 5-year survival rate for patients with EC 
in China remains dismal at only 15–25% [3]. Like other 
cancers, early diagnosis can contribute to a dramatically 
improved 5-year survival rate for patients with EC [4]. 
Epidemiological studies have shown that relevant vari-
ables, such as smoking and alcohol consumption, are risk 
factors for EC, and striking sex and age disparities also 
exist [5, 6]. In addition, the existence of various genetic 
variants is closely associated with susceptibility to EC [7, 
8].

To improve early detection of EC, a promising approach 
is to establish a risk prediction model that incorporates 
well-recognized risk factors to identify high-risk indi-
viduals in advance. Furthermore, ethnic differences in 
either genetic factors or histologic subtypes deserve full 
consideration. EC includes esophageal squamous cell car-
cinoma (ESCC) and esophageal adenocarcinoma (EAC). 
In China, ESCC is predominant.

As an effective tool to improve risk stratification, risk 
prediction models have been developed based on a com-
bination of genetic and non-genetic factors for various 
malignancies, such as breast cancer [9] and colorectal 
cancer [10]. In 2008, Yokoyama et al. [11] constructed 
a prediction model for EC by incorporating a single-
nucleotide polymorphism (SNP) and four individual risk 
factors. The results showed that compared with con-
ventional screening protocols, the positive predictive 
value of endoscopy for the top 10% of risk in the model 
was increased by approximately 1.7%. However, one 
SNP cannot adequately represent the genetic variants 
related to EC, and the study was conducted only in the 
Japanese male population. In addition, Chang et al. [12] 
developed a prediction model for ESCC in Chinese pop-
ulation by including 25 SNPs and 4 non-genetic factors. 
However, inclusion of a large number of SNPs hampers 
cost-effectiveness. In 2018, Dong et al. [13] developed a 
risk model for EAC among people of European ancestry 
by including 23 genetic variants and several epidemio-
logic factors. The conclusions of these studies regarding 
whether it is essential to incorporate genetic factors into 
risk models for EC were inconsistent due to the different 
genetic backgrounds of the populations included. To the 
best of our knowledge, studies including genetic variants 
in risk prediction models for EC are still limited for the 
Chinese population to date. Genetic predisposition, as 
a well-established risk indicator of EC, warrants further 

research to clarify its value in predicting the risk of devel-
oping EC [14].

In this study, a meta-analysis was performed to com-
prehensively identify potential SNPs that may predispose 
individuals to EC in Chinese population. A case-control 
study was carried out to verify the associations of these 
SNPs with EC, followed by construction of risk predic-
tion models based on a panel of well-established risk fac-
tors and promising SNPs to provide an effective tool for 
identifying individuals at high risk.

Methods
Meta-analysis for selecting candidate SNPs
The meta-analysis was conducted according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement.

Search strategy
To identify SNPs related to EC, a comprehensive litera-
ture search was performed using the following online 
databases up to July 1, 2020: PubMed, EMBASE, Web 
of Science, Cochrane Library, CNKI (Chinese), Wan-
Fang (Chinese), and CBM (Chinese). The following 
search terms were used: (risk factors) AND (esophageal 
OR esophagus) AND (neoplasm OR cancer OR tumor 
OR neoplastic OR carcinoma OR adenocarcinomas OR 
malignancy OR malignancies OR neoplasia) AND (single 
nucleotide polymorphism OR SNP OR variant OR varia-
tion OR polymorphism) AND (Chinese OR China).

Inclusion and exclusion criteria
The eligibility criteria were as follows: (1) studies on asso-
ciations between SNPs and EC risk; (2) studies for which 
odds ratios (ORs) and 95% confidence intervals (CIs) 
were available; (3) studies for which the genotype dis-
tribution in the controls was in accordance with Hardy-
Weinberg equilibrium (HWE); and (4) case-control or 
cohort-designed study. The exclusion criteria were as 
follows: (1) not original studies (reviews, meta-analyses, 
letters, and abstracts); (2) fewer than three studies for 
one SNP; (3) studies for which the sample size of cases 
or controls was less than 10; and (4) studies for which 
the minor allele frequency was less than 1% in the con-
trol group. For studies based on the same population, we 
selected only the study with the most informative data.

Data extraction and quality assessment
The following data were extracted independently by 
two authors: the first author, year of publication, study 
region, cancer type, gene, SNP, distribution of genotypes 
in case and control groups, type of controls, genotyp-
ing method, and quality control. Any discrepancies were 
resolved through discussion with a third investigator. The 
Newcastle-Ottawa Scale (NOS) was used to evaluate the 
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quality of the studies. We rated the quality as 0–9, with 
scores of 5–6 and 7–9 being judged to represent moder-
ate and high quality, respectively.

A case-control study for verifying candidate SNPs
Subjects
In total, 500 EC patients and 500 controls were enrolled 
for the current study. All cases were obtained from a 
third-level grade A hospital in Henan Province, China, in 
2018 and confirmed by pathology reports. Controls were 
randomly selected from participants in a cardiovascu-
lar disease epidemiological survey simultaneously con-
ducted in Henan Province and were frequency-matched 
to cases by sex. The exclusion criteria for patients and 
controls were as follows: (1) patients with EC who had a 
history of another tumor; (2) controls who experienced 
health problems, including tumors and esophagus-
related diseases.

Basic information of the subjects with EC was retrieved 
from clinical records, and the controls were administered 
a professionally designed questionnaire that assessed 
information regarding non-genetic factors. Individuals 
who had smoked at least one cigarette every 1–3 days for 
more than six months were considered smokers. Indi-
viduals who had drunk alcohol at least once a week for 
more than six months were considered drinkers. This 
study was approved by the Institutional Review Board 
of Zhengzhou University, and all participants provided 
informed consent.

Genotyping and quality control
A GeneJET Whole Blood Genomic DNA Purification 
Mini Kit was used to extract DNA. Improved multiplex 
ligation detection reaction (iMLDR™) was used to geno-
type SNPs in the case group. ABI3730XL sequencer 
(AppliedBiosystems, U.S.A) and GeneMapper 4.0 were 
used for sequencing and identification of genotypes, 
respectively. Genotyping in the control group were per-
formed via DNA sequencing. All DNA samples were suc-
cessfully genotyped.

For quality control, agarose gel electrophoresis was 
applied for each sample before genotyping. The quality of 
genotyping was assessed by using negative quality control 
and repeated genotyping of 3% of the samples randomly 
selected. Moreover,10% of the samples in the case group 
were further genotyped by using DNA sequencing to ver-
ify the concordance of the two methods.

Construction of risk prediction models for esophageal 
cancer
Data were randomly split into a training set (60%, 301 
cases and 299 controls) for developing risk prediction 
models and a verification set (40%, 199 cases and 201 
controls) for evaluating the resulting models.

Three models containing different variables were 
developed: a genetic model with genetic markers only; 
a non-genetic model fit with environmental risk factors, 
including smoking, alcohol consumption, and family his-
tory of esophageal cancer; and a combined model includ-
ing both genetic and non-genetic predictors.

Promising SNPs verified in the case-control study 
were utilized to calculate the weighted genetic risk score 
(wGRS). The genetic model was then constructed using 
this wGRS [15]. Logistic regression was employed to 
develop non-genetic and combined models.

The wGRS is estimated as follows:
The genetic score of single SNP was calculated based 

on the OR of the risk allele and the frequency of genotype 
in Chinese population (Chinese Han in Beijing, CHB).

Genetic score (W) = (1-p)2+2p(1-p)OR + p2OR2 (p is 
the risk allele frequency).

AA = 1/W; AB = OR/W; BB = OR2/W (A is the non-risk 
allele; B is the risk allele; AA, AB, and BB refer to the SNP 
genotype).

wGRS = SNP1×SNP2×SNP3×SNP4……SNPn (Missing 
value set to 1).

Statistical analysis
In the meta-analysis, ORs with 95% CIs were used for 
assessment of associations between genetic variants and 
EC risk. Statistical heterogeneity was evaluated by means 
of the Cochran Q-test and I2 statistic. A fixed-effects 
model (Mantel-Haenszel) was applied if the P value was 
≥ 0.10 or I2 was ≤ 50%; otherwise, a random-effects model 
(DerSimonian-Laird) was applied. Begg’s test and Egger’s 
test were conducted to examine publication bias.

Unconditional logistic regression was performed to 
evaluate associations between genetic variants and EC 
risk in this case-control study. The chi-square test of 
goodness of fit was employed to analyze whether the 
distribution of genotypes in the control group matched 
HWE. For significant SNPs, the false-positive report 
probability (FPRP) was calculated to verify the authentic-
ity of the summary results [16, 17]. The default value of 
the FPRP critical value was 0.5, and the prior probabili-
ties were set to 0.25, 0.1, and 0.01. The attributable risk 
percentage (ARP) and population attributable risk per-
centage (PARP) were calculated to evaluate the epidemi-
ological effect of each SNP.

Receiver operating characteristic (ROC) curves and the 
net reclassification index (NRI) were utilized to evaluate 
the discrimination of the different models with the area 
under the ROC curve (AUC), sensitivity, specificity, posi-
tive likelihood ratio, negative likelihood ratio, and accu-
racy rate. Comparison of AUCs was further performed 
by using DeLong’ test [18]. The Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) were 
adopted to determine the goodness-of-fit of the models.



Page 4 of 10Liu et al. BMC Cancer          (2024) 24:598 

R software (version 4.2.2), MedCalc (version 20.027), 
SPSS (version 26.0), and Stata statistical software (version 
15.1) were used in this study. Statistical significance was 
determined at α = 0.05, and all P values for statistical sig-
nificance were two-sided.

Results
Main findings from the meta-analysis
The screening procedure is summarized in online Addi-
tional file 1: Figure S1. After duplicate exclusion (n = 2 
865), title or abstract screening (n = 3 336), and full-text 
review (n = 336), a total of 100 articles (149 SNP-related 
studies) were ultimately included in the subsequent 
analysis (online Additional file 3: Supplementary Refer-
ences). If two populations or SNPs were present in one 
article, we considered it to be two independent studies. 
The studies included 48 654 cases and 58 373 controls, 
involving 29 SNPs located in 22 genes. The number of 
datasets for each SNP ranged from 3 to 11, with the most 
widely studied SNP being ALDH2 rs671. More details of 
the SNPs are provided in online Additional file 2: Table 
S1 and Additional file 1: Figure S2.

Twelve SNPs significantly decreased or increased the 
risk of EC (P53 rs1042522, CYP1A1 rs1048943, ADH1B 
rs1229984, ERCC2 rs13181, NQO1 rs1800566, MMP13 
rs2252070, PLCE1 rs2274223, CDKN1A rs2395655, 
CYP2E1 rs3813867, TERT rs401681, CYP1A1 rs4646903, 
and IL23R rs6682925) (online Additional file 2: Table 
S2). Specifically, six SNPs (CYP1A1 rs1048943, ADH1B 
rs1229984, ERRCC2 rs13181, MMP13 rs2252070, PLCE1 
rs2274223, and CYP2E1 rs3813867) were significant 
under all 5 genetic models. The most significant associa-
tion with EC risk was observed for CYP1A1 rs1048943 

under the homozygous model (OR = 2.44, 95% CI: 1.79 to 
3.33). For the 12 significant SNPs indicated above, FPRP 
was the best for 12/12, 12/12 and 9/12 at the 0.25, 0.1 and 
0.01 levels, respectively (online Additional file 2: Table 
S3), which suggests that the findings are relatively reli-
able. The top three SNPs for ARP were CYP2E rs3813867 
(65.87%), CYP1A1 rs1048943 (59.02%), and ADH1B 
rs1229984 (55.16%). Moreover, the top three SNPs for 
PARP in the controls and CHB were the same as those 
for ARP. PARP for each SNP between the control group 
and CHB was similar, suggesting the controls to be repre-
sentative (online Additional file 2: Table S4). Additionally, 
the findings from publication bias assessments provided 
little indication of publication bias except for ERCC2 
rs13181 and NQO1 rs1800566.

Characteristics of the population
The detailed characteristics of the study subjects are 
shown in Table 1. There was no significant difference in 
sex between the patients and control subjects because of 
the frequency-matched design. The mean age was signifi-
cantly older in the case group (63.00 ± 8.33) than in the 
control group (46.80 ± 11.55). As expected, compared 
with the controls, the EC patients were more likely to 
smoke, drink alcohol, and have a family history of esoph-
ageal cancer.

Evaluation and verification of SNPs in the case-control 
study
A total of 14 SNPs were evaluated, including 12 SNPs 
identified in the previous meta-analysis and another two 
SNPs, namely, MTHFR rs1801133 and ALDH2 rs671, 
included in a large number of studies in the above meta-
analysis and considered to be significant in reviews [19, 
20]. Finally, five promising SNPs (P53 rs1042522, MTHFR 
rs1801133, PLCE1 rs2274223, ALDH2 rs671, and ADH1B 
rs1229984) were validated as EC susceptibility loci 
(online Additional file 2: Table S5 and Table S6). For P53 
rs1042522 and ADH1B rs1229984, the best-fitting genetic 
model was recessive and the ORs were 0.69 (95% CI: 
0.48 to 1.00) and 1.78 (95% CI: 1.08 to 2.94), respectively. 
For MTHFR rs1801133, PLCE1 rs2274223, and ALDH2 
rs671, the best-fitting genetic model was the dominant 
model, with ORs of 0.41 (95% CI: 0.26 to 0.65), 1.93 (95% 
CI: 1.37 to 2.71), and 2.42 (95% CI: 1.65 to 3.56), respec-
tively. For these 5 promising SNPs, FPRP was the best for 
5/5, 5/5 and 3/5 at the 0.25, 0.10 and 0.01 levels, respec-
tively (online Additional file 2: Table S7).

Weighted genetic risk score (wGRS)
Details regarding the calculation of wGRS are described 
in online Additional file 2: Table S8. The wGRS was signif-
icantly greater in the patients than in the controls (Fig. 1). 
Next, we assessed the association between wGRS and EC 

Table 1  Baseline characteristics of participants in the case-
control study
Variables Cases Controls t/χ2 P value

(n = 500) (n = 500)
Age, y, (Mean ± SD) 63.00 ± 8.33 46.80 ± 11.55 25.418 < 0.001
Sex, n (%)
  Male 363(72.6) 363(72.6) < 0.001 1.000
  Female 137(27.4) 137(27.4)
Smoking status, n (%)
  Yes 222(44.4) 173(34.6) 10.047 0.002
  No 278(55.6) 327(65.4)
Drinking status, n (%)
  Yes 194(38.8) 148(29.6) 9.403 0.002
  No 306(61.2) 352(70.4)
Family history of 
esophageal cancer, 
n (%)
  Yes 78(15.6) 10(2.0) 57.616 <0.001
  No 422(84.4) 490(98.0)
NOTE: χ2 test was performed for categorical variables and Student t test was for 
continuous variables. SD: standard deviation
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risk (based on the quartile distribution in the controls), 
and found increased ORs across quartiles of wGRS (P for 
trend < 0.001 in the training set; P for trend = 0.005 in 
the validation set). The results showed that in the train-
ing set, individuals in only the highest quartile of wGRS 

had a 4.93-fold (95% CI: 2.59 to 9.38) increased risk of EC 
compared with those in the lowest quartile. In the valida-
tion set, a significantly increased risk was also observed 
only for the highest quartile (OR = 3.12, 95% CI: 1.53 to 
6.36) (Table 2).

Table 2  Association of wGRS with the risk of esophageal cancer
wGRS Training set Validation set

OR (95%CI) P value P for trend OR (95%CI) P value P for trend
Lowest 1.00(Reference) - 1.00(Reference) -
Second 1.59(0.79,3.19) 0.194 1.01(0.46,2.23) 0.974
Third 1.50(0.77,2.91) 0.235 1.45(0.68,3.11) 0.335
Highest 4.93(2.59,9.38) < 0.001 < 0.001 3.12(1.53,6.36) 0.002 0.005
NOTE: Based on the quartile distribution in the controls. Adjusted for age, smoking, alcohol consumption, and family history of esophageal cancer. wGRS, weighted 
genetic risk score. Training set: 301 cases and 299 controls; Validation set: 199 cases and 201 controls

Table 3  Evaluation of predictive performance and goodness of fit of risk prediction models
Indicators Training set Validation set

Genetic Non-genetic Combined Genetic Non-genetic Combined
AUC 0.618 0.650 0.707 0.609 0.612 0.669
AUC 95%CI (0.578,0.657) (0.610,0.688) (0.669,0.743) (0.559,0.657) (0.563,0.660) (0.620,0.715)
Youden index 0.201 0.241 0.323 0.215 0.213 0.289
Sensitivity (%) 48.50 42.19 69.44 56.78 42.21 56.28
Specificity (%) 71.57 81.94 62.88 64.68 79.10 72.64
Accuracy (%) 60.00 62.00 66.17 60.75 60.75 64.50
Positive likelihood ratio 1.71 2.34 1.87 1.61 2.02 2.06
Negative likelihood ratio 0.72 0.71 0.49 0.67 0.73 0.60
AIC 805.41 776.78 750.55 538.84 530.50 511.80
BIC 814.21 785.58 759.34 546.82 538.49 519.78
NOTE: The genetic model was based on wGRS; the non-genetic model included non-genetic factors which were seen in the text; the combined model included both 
wGRS and non-genetic factors. AUC: area under the curve; AIC: Akaike information criterion; BIC: Bayesian information criterion; wGRS: weighted genetic risk score

Fig. 1  The distribution of wGRS in the case and control groups. (A) in the training set; (B) in the validation set. wGRS, weighted genetic risk score. 
***P < 0.001

 



Page 6 of 10Liu et al. BMC Cancer          (2024) 24:598 

Construction and evaluation of risk prediction models
In the training set, the genetic model was con-
structed based on wGRS. The equation of the 
non-genetic model was as follows: Y1 = 1/(1 + EXP(-(-
0.236-0.584 × 1 + 2.038 × 2 + 1.392 × 3))) (X1, smoking; X2, 
family history of esophageal cancer; X3, the interaction 
of smoking and alcohol consumption). The combined 
model was expressed as follows: Y2 = 1/(1 + EXP(-(-
1.110 + 0.908 × 1-0.558 × 2 + 1.976 × 3 + 1.393 × 4))) (X1, 
wGRS; X2, smoking; X3, family history of esophageal can-
cer; X4, the interaction of smoking and alcohol consump-
tion) (online Additional file 2: Table S9).

We evaluated the discriminative ability of the mod-
els. The non-genetic model achieved moderate accu-
racy in distinguishing EC patients from controls, with 
an AUC of 0.650 (95% CI: 0.610 to 0.688). The model 
containing the wGRS alone had a relatively lower AUC 
of 0.618 (95% CI: 0.578 to 0.657). When comparing the 

two AUCs, no statistical significance was found (Delong’s 
test, P = 0.301). However, with the addition of wGRS, the 
AUC for the non-genetic model significantly increased 
from 0.650 to 0.707 (Delong’s test, P < 0.001). Overall, the 
combined model was superior to the other models with 
genetic or non-genetic parameters alone (Fig. 2; Tables 3 
and 4). As shown in Table 3, the combined model had a 
sensitivity of 69.44%, a specificity of 62.88%, and an accu-
racy of 66.17%.

Based on the NRI, the prediction effect of the com-
bined model was significantly greater than that of the 
model with non-genetic parameters alone in both the 
training and validation sets (training set: NRI = 0.082, 
P = 0.037; validation set: NRI = 0.076, P = 0.033). When 
comparing the combined and genetic models, the NRI 
significantly improved only in the training set (training 
set: NRI = 0.122, P = 0.001; validation set: NRI = 0.075, 
P = 0.225) (Table  4). According to the AIC and BIC, the 

Table 4  Comparison of different esophageal cancer risk prediction models
Model comparison Difference of AUC Za P valuea NRI Zb P valueb

Training set
  Genetic vs. non-genetic 0.032(-0.028,0.091) 1.034 0.301 0.041 0.755 0.450
  Genetic vs. combined 0.089(0.048,0.130) 4.256 < 0.001 0.122 3.234 0.001
  Non-genetic vs. combined 0.058(0.030,0.086) 4.067 < 0.001 0.082 2.082 0.037
Validation set
  Genetic vs. non-genetic 0.004(-0.072,0.079) 0.091 0.927 -0.002 0.020 0.984
  Genetic vs. combined 0.060(0.007,0.113) 2.223 0.026 0.075 1.214 0.225
  Non-genetic vs. combined 0.057(0.021,0.092) 3.084 0.002 0.076 2.128 0.033
NOTE: The difference of AUC was analyzed using Delong’s test. NRI, net reclassification improvement.
a represents the z-statistic and P value from Delong’s test;
b represents the z-statistic and P value from NRI analysis

Fig. 2  Receiver operating characteristic curves for risk prediction models of esophageal cancer. (A) the three models were constructed in the training set; 
(B) these models were verified in the validation set
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combined model was selected as the best fitting model 
(AIC = 750.55, BIC = 759.34) (Table 3). Overall, the model 
incorporating both genetic and non-genetic factors 
showed optimal predictive performance.

The predictive performance of these models was then 
evaluated by using another independent validation set. A 
similar discrimination ability was observed, which indi-
cated that the models had rosy stability.

Discussion
In this study, a meta-analysis approach was used to iden-
tify potential SNPs related to EC risk in Chinese popula-
tion, and a case-control study was designed to verify the 
associations of these SNPs with EC risk. A total of three 
models were effectively constructed and evaluated. The 
results suggested that the combined model was prefer-
able to the other models, which further supports that the 
addition of multiple genetic variants may provide reliable 
value in EC risk prediction.

In the meta-analysis, although the results of some SNPs 
were consistent with those of previous meta-analyses or 
a genome-wide association study (GWAS) [21, 22], there 
were some inconsistencies [23, 24]. For instance, a previ-
ous meta-analysis [24] revealed that CYP1A1 rs4646903, 
which was significant in our meta-analysis, may not affect 
susceptibility to EC in Asian populations, while another 
meta-analysis [22] revealed that this statistically increas-
ing risk was observed in the population from North 
China. These discrepant findings may be partly explained 
by differences in genetic susceptibility and environmental 
risk factors among diverse populations. Thus, to lessen 
the influence of different genetic backgrounds, our meta-
analysis was conducted only in Chinese population.

Among the five promising SNPs used in the mod-
els, ADH1B rs1229984 and ALDH2 rs671 are involved 
in ethanol metabolism [25, 26]. The rs1229984 C allele 
and rs671 A allele can result in accumulation of acetal-
dehyde [27, 28]. Among individuals with a combination 
of the two risk alleles, the level of N2-ethylidene-dG in 
the DNA of leukocytes from alcoholics was significantly 
increased, which enhanced DNA damage, leading to an 
elevated risk of EC [29]. The rs2274223 polymorphism in 
PLCE1 affects esophageal carcinogenesis by enhancing 
the inflammatory response and upregulating phospholi-
pase C epsilon mRNA, protein, and enzyme activity [30]. 
In addition, for P53 rs1042522 and MTHFR rs1801133, 
associations with EC risk may vary among different pop-
ulations. The vital polymorphism P53 rs1042522, encod-
ing proline or arginine, is located at codon 72 of exon 4 
[31]. Several studies have reported an approximately 
twofold increase in the risk of EC in individuals with 
the rs1042522 CC genotype [32, 33], while other stud-
ies have shown that the GG genotype was a risk marker 
for human papillomavirus-associated EC [34, 35]. In our 

case-control study, the rs1042522 CC genotype reduced 
the risk of EC. Peng et al. also provided evidence that 
the CC genotype might be a risk factor for EC suscepti-
bility in southern China but not in northern China [36]. 
Moreover, some studies have shown that the MTHFR 
rs1801133 TT genotype can increase the risk of EC [37, 
38], while the rs1801133 T allele was showed to decrease 
EC risk in another study conducted in Henan Province, 
China [39]. There are several possible explanations for 
these different findings. The gene product of MTHFR is 
a central enzyme involved in folate metabolism, and the 
level of folate intake may influence the risk of EC asso-
ciated with this polymorphism [40, 41]. In another study 
[42], the rs1801133 polymorphism increased EC risk, but 
the association disappeared after stratification by folate 
consumption. Additionally, the frequency of rs1801133 
also differs by ethnicity [40].

Previous risk prediction models for EC were mostly 
based on non-genetic factors [14, 43–47], and easy-to-
obtain variables were included in a standardized manner 
without any extra costs. However, for such a complex eti-
ological disease, the actual predictive efficacy of environ-
mental factors alone has not been completely established. 
In terms of numerous genetic variants, many studies 
[48, 49] on other cancers have reported that the predic-
tive ability improved after adding genetic information 
to a model developed with non-genetic factors. For EC 
risk, Chang et al. [12] calculated the wGRS through the 
use of 25 SNPs and added the wGRS to the model with 4 
non-genetic factors (sex, age, smoking status, and drink-
ing status), with an elevated AUC ranging from 0.639 to 
0.709. In another study, Dong et al. [13] used 23 GWAS-
based SNPs to generate polygenic risk score (PRS) and 
found that individuals in the highest quartile had a more 
than 2-fold greater risk of developing EAC than those in 
the lowest quartile. However, Dong et al. noted that add-
ing the PRS to a risk prediction model with non-genetic 
factors did not greatly improve its clinical use. Given that 
genetic predisposition is widely recognized as a well-
established risk factor for EC, we constructed and evalu-
ated risk prediction models with various combinations of 
genetic or non-genetic factors. Our findings provide sup-
porting evidence that the addition of genetic predisposi-
tion significantly enhances performance in predicting EC 
risk.

There are several strengths of this study. First, meta-
analysis was applied to comprehensively screen SNPs 
only in the Chinese population, avoiding the influence 
of different ethnicities. Second, the number of SNPs 
included in our risk models was relatively less than that 
in previous studies incorporating genetic variants [12, 
13], which can improve cost-effectiveness. Third, when 
assessing whether there was improvement in discrimi-
nation after adding a new promising maker, the NRI 



Page 8 of 10Liu et al. BMC Cancer          (2024) 24:598 

was used to evaluate the degree of prediction increment 
in addition to AUC. The NRI especially focuses on the 
change in the number of individuals correctly discrimi-
nated by the new model compared to the old model, 
which can help to optimize limited resources. The good-
ness-of-fit of the model was evaluated using the AIC and 
BIC. After examining both the goodness-of-fit and pre-
dictive ability, the combined model was ultimately con-
sidered the optimal model in our study. Furthermore, the 
environmental risk predictors included in our models, 
such as smoking and alcohol consumption, were modifi-
able, which could enhance the awareness of adherence to 
healthy lifestyles.

Nevertheless, several limitations merit consideration. 
First, as mentioned previously, different genotyping 
methods were used in the case and control groups, which 
may bias the results. However, to minimize this bias, 10% 
of the samples from the cases were further genotyped by 
DNA sequencing, which was used for the controls, with 
consistent results. Second, external validation of our 
models was not conducted given the limited data avail-
ability, which included genetic data available outside of 
the present study. Third, genetic variants display regional 
and population differences, and our study constructed 
the wGRS associated with the risk of EC in the Chinese 
population through a case-control study, which may 
weaken the generalization of this wGRS to other racial or 
ethnic groups. Moreover, we must note that other related 
effect modifiers, such as the consumption of hot food and 
preserved vegetables, were not taken into consideration 
in our models; as such, they were not available for the 
study population. To address these issues, more compre-
hensive investigations should be performed when data 
are available.

Conclusions
In summary, three risk prediction models were devel-
oped based on various combinations of the wGRS or 
environmental risk factors. The results indicated that the 
combined model including both genetic and non-genetic 
factors showed the optimal predictive performance for 
EC risk, which can help to identify individuals with an 
increased risk of EC for individualized prevention from 
early stages in life. Further studies on external validation 
and cost effectiveness are needed to verify the practical 
feasibility of the model.
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