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Abstract 

Background  Cancerous cells’ identity is determined via a mixture of multiple factors such as genomic variations, 
epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expres-
sion as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more 
recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely 
on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, 
so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the align-
ment of the sequences to a reference.

Results  Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations 
over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, 
polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused 
events systematically in a classic transcriptome analysis pipeline where these events are considered as indica-
tors for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect 
to the immune microenvironment.

Conclusions  Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained 
via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lin-
cRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples 
differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated 
events.

Keywords  Reference-free, k-mer, Differential analysis, Transcriptome, Neoantigens

Introduction
The detailed analysis of cancer transcriptome has 
changed our comprehension of tumor dynamics. Such 
analysis is currently being utilized in studying tumor 
progression dynamics and their diagnosis, mainly 
because of the broader and cost-effective appearance 
of next-generation sequencing (NGS) techniques. The 

earlier transcriptomic analysis mainly utilizes DNA 
microarrays while focusing on genes encoding for 
protein. Newer bulk RNA-seq and single-cell RNA-
seq (scRNA-seq) datasets provide us with a more com-
prehensive analysis and breakdown of gene expression. 
Even though RNA-seq and scRNA-seq can identify a 
higher number of transcripts than the typical DNA 
microarrays, their focus in cancer cells has again been 
over annotated genes. However, such analysis over 
annotated genes may not include a significant number 
of unannotated endogenous reverse transcription ele-
ments, non-coding RNAs, mRNA isoforms, as well as 
unannotated transcripts of bacteria and viruses [1]. In 
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this case, classical RNA-seq analysis techniques ignore 
a significant degree of knowledge of those transcripts. 
More recently, such ignorance has started to be taken 
more seriously by researchers. Recent studies have 
focused on inferring the cancer dynamics and mecha-
nisms via quantitatively analyzing the transcripts. As a 
result, these studies have identified a great many num-
bers of cancer-associated transcripts which include 
splicing variants [2], viral RNA [3], bacterial RNA [4], 
small nucleolar RNAs  (snoRNAs)  [5], and long inter-
genic non-coding RNAs (lincRNAs) [6].

The remaining missing RNA diversity is also due 
to genomic mutations and duplications of the black-
listed regions, since those regions may not be inferred 
via traditional techniques  [7]. To our best knowledge, 
none of the existing approaches can simultaneously 
analyze and infer this whole set of different types of 
mutational knowledge from RNA-seq or scRNA-seq 
transcriptomic datasets. Such a missing analysis is 
mainly due to more classical transcriptome analy-
sis requiring a reference genome, which compares 
sequence datasets to reference sequences. Corre-
spondingly, we lose a significant amount of unanno-
tated genetic knowledge which could not be assessed 
via the comparison tools. In cancer cells, each tumor 
cell has almost a distinct transcriptome differing from 
the non-cancer tissues transcriptome in a number of 
means. Therefore, techniques which are not based on 
reference sequence alignment can be important and 
remarkably beneficial.

Here, we have applied a recently-proposed exhaustive 
technique DE-kupl [8] that carries out differential anal-
ysis of scRNA-seq transcriptome datasets via smaller 
k-mers. DE-kupl does not use reference sequences 
and does not depend on aligning sequences. So, it may 
identify novel RNA and RNA isomers occurring within 
the datasets at a nucleotide resolution. This is especially 
functional and important for transcripts which cannot 
be easily aligned by more classical techniques, namely 
chimeric RNA and RNA from repeated sequences. We 
have compared the whole set of non-reference events 
identified in esophageal cancer  (ESCA) and glioblas-
toma tissues with the normal tissues that are located 
near cancerous tissues by DE-kupl. Our results do not 
significantly change if we use different tools such as 
MINTIE  [9] and TAP  [10] instead of DE-Kupl. Those 
original transcriptome events in cancer cells are mainly 
due to mutations in non-coding and coding regions. 
As a result, we have also identified antigens specific to 
tumors that have therapeutic potential. Additionally, 
those novel events have been shown to be critical for 
diagnosing tumors, the prognosis of tumors, and the 
infiltration of the immune system.

Related work
The existing strategies for bulk RNA-seq and single-cell 
RNA-seq analysis do not completely consider an exten-
sive set of transcript diversity. A commonly-used tech-
nique aligns or pseudo-aligns RNA-seq reads over a 
reference transcriptome in quantifying transcripts  [11]. 
Even though those techniques could be utilized to detect 
isoform-switching events, such analysis is restricted to 
transcripts occurring over the input reference  [12]. A 
different method tries to build full-length transcripts, 
either de novo or reference-based. Even though those 
procedures could infer the previously undiscovered tran-
scripts, they cannot fully analyze the true diversity of 
transcription since small-scale variations are ignored by 
them, such as SNPs, indels, and edited bases, as well as 
they have a difficulty in handling repeat-including tran-
scripts. Another set of procedures focuses on discovering 
specific events, such as allele-specific expression, circu-
lar RNAs, fusion transcripts, intron retention events, 
alternative polyadenylation events, or splicing events. 
Some examples of these variation detection techniques 
are CICERO  [13], MINTIE  [9], TAP  [10], DE-kupl  [8], 
etc. Strategies that combine a diverse set of analysis tools 
for a comprehensive analysis of transcriptome cannot be 
easily implemented and they are not fully exhaustive [14]. 
Among the existing work on cancer transcriptome analy-
sis,  [15] focuses on discovering transcriptomic events 
only in esophageal cancer’s bulk RNA dataset. Their 
study is limited to applying De-Kupl for differential RNA 
analysis.

Materials and methods
Datasets
Discovery Datasets: We have obtained 64 ESCA sin-
gle-cell RNA-seq samples from  [16] which includes 60 
esophageal cancer tissues and 4 neighboring normal tis-
sues, over 60 individuals. When needed, we have con-
verted files in bam formats to fastq file formats via Picard 
tools [17]. CutAdapt software [18] has been used to trim 
sequences with low quality and adapter sequences. By 
applying a similar procedure, we have also processed 
brain cancer (glioblastoma) single-cell RNA-seq samples 
over 25 cancer tissue samples and 5 neighboring normal 
tissue samples as a discovery dataset [19].

Validation Datasets: We have obtained the validation 
dataset for ESCA with accession PRJNA374673 from SRA 
database  [20]. This validation dataset includes 40 ESCA 
cancer tissues and 40 matching non-cancer tissues. We 
have obtained the fastq files from SRA via SRAtoolkit soft-
ware  (https://​hpc.​nih.​gov/​apps/​srato​olkit.​html). CutA-
dapt software has again been used to trim sequences with 
low quality and adapter sequences. By applying a similar 
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procedure, we have also obtained brain cancer samples 
from SRA database with accession PRJNA869596, over 20 
cancer tissues and 20 normal tissues as a validation dataset.

DE‑kupl software pipeline
As a first filter, k-mers appearing fewer than 5 times 
as well as occurring in less than 10 samples have been 
removed to significantly lessen the effect of sequencing 
errors, while keeping almost all of the esophageal cancer-
associated mutations. In the second filter, the whole set 
of k-mers occurring in the reference genome has been 
removed. No variation is contained in those k-mers since 
those k-mers are the same as the reference sequence. By 
utilizing the filtering approach, we are able to concentrate 
on novel transcripts without any annotation or transcripts 
with mutations. Afterwards, k-mer counts are normal-
ized. In this case, the normalization factor of k-mer count 
is computed by the median of the sample count to the 
pseudo-reference count, that results from the calculation 
of the geometric mean of each k-mer across the whole 
set of samples. Rectification and normalization have been 
used to remove the unequal structure of the dataset gen-
erated by the discrepancy among samples.

While carrying out differential expression  (DE) analy-
sis, we have identified k-mers which are remarkably dif-
ferentially expressed between normal and ESCA tissues 
by using Limma Voom [21] algorithm. Similar differential 
expression analysis has also been applied to glioblastoma. 
After applying multiple test corrections, we have chosen 
statistically significant k-mers with a p-value lower than 
0.05 and log2FC value greater than 1 as differentially-
expressed k-mers. In this analysis, we have combined 
the identified k-mers with statistically significantly dif-
ferent expression values into longer sequences called 
contigs. In addition to k-mer analysis, we have also car-
ried out a quantitative analysis more conventionally and 
directly over gene levels. We have utilized Kallisto soft-
ware [22] and Gencode v34 transcripts while measuring 
the gene level expressions, and incorporated transcripts 
TPM  (Transcript Per Million) values from the identical 
gene. We have again carried out differential expression 
analysis by using Limma and following the procedure 
described above.

Annotation of contigs
DE-kupl does not depend on reference sequences, 
which is one of its main premises. Differentiation 
among contigs containing different types of variations 
and the contigs proposing novel transcripts can be 
mainly achieved by using sequence alignment anno-
tation analysis on the whole set of contigs sequences. 
We match contigs to the human genome for the 

contigs sequence assembled via DE-kupl program, 
by GSNAP  (Genomic Short-read Nucleotide Align-
ment Program) which is a tool to align single-end and 
paired-end reads to a reference genome. Moreover, the 
exact genomic position, adjacent genes, Differential 
Usage  (DU) status  [23], and functional intervals such 
as introns, exons, or intergenic regions have also been 
provided  [23]. Repetitive sequences are always sensi-
tive and difficult for each existing aligner due to them 
aligning to more than one genome position. To handle 
those repeated sequences, BLAST method is used for 
aligning them to the DFAM database [24]. Lastly, con-
tigs are classified into event classes such as lincRNA, 
splitting, duplication, polyA, introns, SNV  (Single 
nucleotide variant), splicing, and unmapped. We have 
not called any anti-sense events as our datasets are not 
stranded.

Event categories‑based clustering of samples
The features of distinct transcription categories in ESCA 
tissues have been analyzed by a number of clustering 
techniques. Firstly, PyComplexHeatmap Python package 
is used to analyze the dissimilar transcription categories 
expression distributions over ESCA and normal tissues 
as well as over glioblastoma and normal tissues [25] Non-
negative Matrix Factorization  (NMF) approach  [26] has 
been used to group tissue samples and examine them, 
which resulted in the analysis of variations in non-coding 
and coding intervals. In this case, intuitive evaluation can 
be achieved by deciding whether a non-coding and cod-
ing variation in ESCA and glioblastoma tissues shows dif-
ferent subtypes by NMF clustering.

Gene Ontology‑based functional enrichment in terms 
of host genes and event categories
In transcriptome analysis literature, differentially-expressed 
genes are commonly used as part of enrichment analysis 
of biological functions, in turn which is mainly to detect 
atypical biological functions as part of illness prognosis. 
Nonetheless, a small number of research analyze biologi-
cal functions at transcript level. Therefore, similar to the 
traditional analysis method, differentially-expressed genes 
are used for enrichment of biological functions as a control. 
In our case, we carry out the significant and crucial tran-
scriptome events functional analysis. We use clusterProfiler 
R package  [27] and GSEApy package  [28] for gene ontol-
ogy [29] functional enrichment by determining the corre-
sponding host gene for every transcriptome event, where 
the significance level is determined by an adjusted p-value 
< 0.05 (Bonferroni corrected).
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Relationships between variants and host genes in terms 
of expressions
Differentially-expressed transcriptome events are not 
consistent with the host genes dynamics all the time. 
For instance, in some cases, we observe strong expres-
sion of transcriptome events whereas host genes are not 
expressed as strongly. A codirectional relationship is 
formed between the consistently-behaving transcription 
events and their corresponding host genes, which implies 
that differentially-expressed transcripts constitute the 
main cause of diverse host gene expression. We establish 
Differential Usage (DU) pairs over transcripts that exhibit 
behaviours different than their host genes. Such differ-
ent transcripts might be considered to differentiate from 
their host genes or the remaining transcript parts, which 
indicate biological functional problems and specific bio-
logical variations. In this case, we have analyzed those 2 
categories of transcript-host gene relationship pairs one 
at a time.

Survival analysis of event categories
We have obtained the clinical knowledge by using 
GDC portal  (https://​portal.​gdc.​cancer.​gov/​proje​cts/​
TCGA-​ESCA), which includes status as well as final 
survival duration. Afterwards, univariate Cox regres-
sion  [30] and multivariate Cox regression  [31] have 
been applied over every event category for evaluating 
the differential events prognosis values. We have car-
ried out survival analysis by utilizing lifelines Python 
package  [32]. For every contig, we calculate p-values 
and hazard ratios (HR). After such calculation, contigs 
with p-value < 0.05 and HR > 1 are treated as the pro-
spective risk components. Lasso Cox regression has 
been originally run with glmnet Python package  [33] 
to select contigs for multivariate Cox regression, by 
applying it to every contig category in an independent 
manner. Following such an independent application, 
we have established multivariate model by utilizing the 
chosen contigs. We divide the patients into low and 
high-risk classes over all risk scores median values to 
represent in Kaplan-Meier (KM) curves [34].

Detection of neoantigens
Antigens specific to tumors can be considered as abnor-
mal polypeptides which can solely be observed on tumor 
cell surfaces  [35]. These polypeptides are immunogenic, 
suggesting that they might be identified and presented 
via immune cells prior to killing tumor tissues. A new 
protein that forms on cancer cells when certain muta-
tions occur in tumor DNA is called a neoantigen. While 
discovering prospective antigens having mutations 
within the DNA’s coding region which have specifically 
been expressed in tumor tissues, conventional techniques 

mainly integrate transcriptome sequencing with whole 
exome sequencing. Besides, non-coding areas of DNA 
may also generate transcripts and be translated into 
peptides. Moreover, a number of new genes which can 
potentially generate antigens specific to tumors have not 
been discovered yet. Correspondingly, we have analyzed 
the transcription events specific to tumors across cod-
ing and non-coding regions in detail. Such analysis and 
evaluation procedures are composed of 2 parts. Initially, 
our results over cancer tissues are compared with normal 
tissues and search for antigens which are uniquely iden-
tified over ESCA and glioblastoma tissues. Secondly, we 
have assessed the affinities of all peptides by using net-
MHCpan version 4.0  [36] and have identified antigens 
specific to tumors with high binding affinities for MHC-I 
molecules.

Cohort validation
We have independently verified the forecasted tumor-
specific antigens to guarantee our screened tumor-spe-
cific antigens are reproducible. We have extracted the 
contig sequences by applying DE-kupl with the identical 
independent process over the discovery dataset. After-
wards, we use Pairwise2 from the Biopython package [37] 
to carry out a pairwise sequence alignment for the con-
tigs over the validation dataset, independently for each 
tumor-specific antigen inferred over ESCA cohort. When 
there are multiple alignment sequences corresponding 
to a tumor-specific antigen, we select the antigen whose 
alignment score is the greatest. Then, we focus on ana-
lyzing whether the expression values between normal tis-
sues and ESCA tissues differ in the validation dataset for 
the matching contig sequences.

Sequence alignment views
For each cohort, we have generated meta-bam alignment 
files for normal and tumor tissues to better visualize the 
events. To achieve this visualization goal, 1 million reads 
have been randomly sampled over each subcohort’s 
fastq file and the alignment of accumulated reads to 
genome (GRCh38) is carried out by running STAR RNA-
Seq aligner [38] with its default parameters. Afterwards, 
Integrative Genomics Viewer  (IGV) is used to visualize 
BAM files [39].

Results
Differential analysis of genes and contigs
We have examined events which are expressed differ-
entially across cancer and normal tissues at contig and 
gene levels. Comparison of differential expression events 
across various dimensions summarizes the similarities 
and disparities among conventional gene level and accu-
rate base level analysis. We stick to the preprocessing 
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steps of the well-studied approaches in terms of gene 
level analysis. Such steps incorporate transcript quantifi-
cation, transcript unification from the identical gene, and 
finally raw count estimation at a gene level. We normalize 
gene level expression profiles to less the library sequenc-
ing and gene length effects, where TPM values are gen-
erated by raw counts. Afterwards, DE-kupl approach is 
utilized in contig level analysis. DE-kupl has an in-house 
mechanism for standardization which uses k-mer counts 
to fix the contig quantification. Lastly, Limma Voom 
approach is used to extract genes and differentially-
expressed contigs.

As seen in Fig. 1a for ESCA tumors, 1623 upregulated 
genes and 1424 downregulated genes have been screened 
over a total of 23213 genes. 51732541 differentially-
expressed k-mers have been identified at the contig level. 
We have assembled those k-mers into 432651 differen-
tially-expressed contigs in ESCA tissues where 262131 
upregulated contigs and 170520 downregulated contigs 
exist. Then, genes are related to differentially-expressed 
contigs. The inferred downregulated and upregulated 
contigs are related to 10131 and 6501 genes, respectively. 
Similarly, Fig. 1b plots the distribution of upregulated and 
downregulated genes for glioblastoma. In ESCA data, we 
found TMED6, GPR155, SIGLEC1, VIP, and CKM to be 
differentially the most upregulated, which have previ-
ously been found to be effective in ESCA formation and 
prognosis  [40]. We found TPX2, SORBS2, HMGCS2, 
CXCR2, and MAL to be differentially the most down-
regulated genes. Among them, TPX2 depletion is a well-
known biomarker in ESCA cells, leading to reduced 
cancer cell growth and invasion ability [41]. CXCR2 has 

also been previously found to mediate the angiogenic 
effects in intestinal microvascular endothelial cell  [42]. 
While considering glioblastoma, we found SOX2, 
DUSP6, SLC24A3, KCNIP3, and DPP4 to be differentially 
the most upregulated, which have previously been found 
to be effective in glioblastoma formation and prognosis. 
Among those genes, SOX2 is a well-established stem 
cell transcription factor needed to induce and maintain 
stemness properties of glioblastoma cancer cells  [43]. 
DUSP6 is also known to be actively involved in oncogen-
esis showing unexpected tumor-promoting properties 
in human glioblastoma, contributing to the develop-
ment and expression of the full malignant and invasive 
phenotype  [44, 45]. In terms of downregulated genes in 
glioblastoma, we found NDRG4, SERPINA3, RPN2, VIM, 
and TIMP1 to be differentially the most downregulated 
genes  [46]. For instance, expression change in RPN2 is 
known to be effective in multiple cancer type formation 
and poor outcome [47].

When we repeat analysis in Fig. 2a, b over validation 
dataset, we obtain almost same results where we again 
observe gene overexpression as seen in Figure. One 
thousand five hundred seventy-seven upregulated genes 
and 1384 downregulated genes have been screened 
over all genes. Most upregulated and downregulated 
genes for both ESCA and glioblastoma are almost same 
between discovery and validation datasets. Over the 
validation dataset, 49824871 differentially-expressed 
k-mers have been identified at the contig level. We have 
assembled those k-mers into 422133 differentially-
expressed contigs in ESCA tissues where 263354 upreg-
ulated contigs and 158779 downregulated contigs exist. 

Fig. 1  Gene vs contig level analysis. Differentially-expressed genes distribution between normal and tumor cells in ESCA and glioblastoma. Blue 
and red colors show downregulated and upregulated genes respectively
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Then, genes are related to differentially-expressed con-
tigs. The inferred downregulated and upregulated con-
tigs are related to 10215 and 6553 genes, respectively. 
Similarly, Fig.  2b plots the distribution of upregulated 
and downregulated genes for glioblastoma. The differ-
ence between discovery and validation datasets is not 

statistically significant for both ESCA and glioblastoma 
according to Wilcoxon test [48].

As seen in Fig. 3a, those genes that are mapped at the 
contig level incorporate a greater knowledge than the 
genes inferred via more traditional gene level studies in 
ESCA. The differentially-expressed genes have disclosed 

Fig. 2  Gene vs contig level analysis over validation dataset. Differentially-expressed genes distribution between normal and tumor cells in ESCA 
and glioblastoma. Blue and red colors show downregulated and upregulated genes respectively

Fig. 3  Contig level vs gene level analysis. Differentially-expressed genes and contigs overlap and relative comparison in ESCA and glioblastoma
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consistent results, where 566 (34.87% ) upregulated genes 
as well as 255  (17.90% ) downregulated genes are identi-
fied across these two different analysis methods. On the 
contrary, the conventional gene level analysis approach 
cannot detect host genes over significantly different 
contigs, so they should be inferred at the contig level. 
In this case, we have identified 5352 downregulated and 
7487 upregulated contigs over host genes. Conventional 
gene level analysis could not uncover those genes since 
different expression is observed solely on a few tran-
scripts. We have also inferred differential usage cases. For 
instance, 357 differentially-expressed genes have been 
downregulated but also generated upregulated contigs. 
Even though those host genes and contigs exhibit dis-
tinct expression patterns and are significantly related to 
ESCA, they cannot be accessed via conventional gene 
level research. Similar contig level vs gene level analysis 
for glioblastoma is shown in Fig. 3b.

Classification of transcriptome events
We have identified 431251 contigs via DE-kupl tech-
nique. Those identified contigs are derived from different 
genome regions corresponding to distinct transcriptome 
events. We have completed the set of annotations by 
mapping those contigs to the human genome and then 
classifying them into multiple distinct transcriptome 
events depending on the type of variation and genome 
position. In this case, conditions for such classification 
are shown in Table  1 for both ESCA and glioblastoma. 
To test the robustness of our analysis on transcriptome 
events, we also run our analysis by using MINTIE [9] and 
TAP [10] as well, where conditions for such classification 
are shown in Table 2 for both ESCA and glioblastoma. In 
our results, we focus all our analysis on DE-Kupl since 
results from other techniques are similar.

As shown in Fig. 4, the expression states of those tran-
scriptome events are remarkably different between nor-
mal and ESCA tissues. In this case, a major disruption in 
expression patterns is a result of distinct transcriptional 
events. Firstly, both low- and high-expression events 
are included across splicing events in tumor cells. Dur-
ing ESCA, both downregulated and upregulated genes 
could generate differentially-produced variable shear 
transcripts. Secondly, significant expression of almost all 
repeats, lincRNAs, unmapped, introns, and SNVs (Single 
Nucleotide Variations) is observed in tumor cells but not 
in normal cells. Such significant expression indicates that 
a number of untypical transcriptional events take place 
during the growth of ESCA, and tumor-specific antigens 
may be contained in those transcriptome events. Lastly, 
transcriptome events are highly represented in a number 
of subgroups. This result in subgroups indicates a pos-
sible ESCA subtype that can be related to the abnormal 
regulation of transcription.

Gene Ontology‑based functional analysis 
over both contigs and genes
We identified differentially-expressed genes to be suit-
able with both approaches which was the result of com-
parison between contig level and gene level datasets. 
Simultaneously, different utilization connection between 
transcripts and genes have been discovered. We car-
ried out a Gene Ontology-based functional enrichment 
over those genes in mastering their biological functions 
in detail, and Fig.  5a, b present functional enrichment 
analysis of upregulated differentially-expressed genes in 
terms of Gene Ontology and KEGG pathways respec-
tively for ESCA and glioblastoma respectively.

Figure  5a shows Gene Ontology-based enrichment 
findings for 634 DEGs  (Differentially Expressed Genes) 
by comparing their differential usage with the linked 

Table 1  Events classification/categorization conditions for both 
ESCA and glioblastoma by DE-Kupl

Event count

 Event class Condition for inclusion ESCA Glioblastoma

Repeats Tandem repeats or multiple hits 69 91

LincRNAs Positioned in intergenic regions 137 173

Introns Positioned in intronic regions 522 532

Splices Spliced 588 593

Polyas Unmapped PolyT head or polyA 
tail

31 38

Split Partially-mapped or chimeric 5 6

Unmapped Unmapped 72 67

Snvs Mapped, contains SNV 177 175

Neos Tumor-specific (expression=0 
in normal)

351 361

Table 2  Events classification/categorization conditions for both 
ESCA and glioblastoma by MINTIE and TAP

MINTIE TAP

 Event class ESCA Glioblastoma ESCA Glioblastoma

Repeats 65 93 60 94

LincRNAs 130 175 135 170

Introns 513 550 515 536

Splices 577 584 588 591

Polyas 37 39 32 38

Split 4 3 4 4

Unmapped 70 63 71 65

Snvs 172 170 170 180

Neos 331 351 325 345
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transcripts in ESCA tumors. The upregulated genes 
are mainly associated with digestive system-associated 
operations and gastric acid secretion. KEGG pathway 
enrichment  [49] is shown in Fig.  5b. According to the 
results, the upregulated genes are significantly enriched 
in JAK-STAT, gastric acid secretion, and the remain-
ing cancer pathways  [50]. In this case, JAK-STAT and 
Glutamatergic synapse pathways are previously veri-
fied cancer pathways  [51, 52], where JAK-STAT signal-
ling is a cornerstone to cancer progression, either as a 
tumour intrinsic driver of cancer growth/metastasis, or 
as a modulator of immune surveillance. Similarly, Fig. 5c 
shows Gene Ontology-based enrichment findings for 
695 DEGs by comparing their differential usage with the 
linked transcripts in glioblastoma. The upregulated genes 
in glioblastoma are mainly associated with central nerv-
ous sytem development and cell cycle. KEGG pathway 
enrichment is shown in Fig. 5d. According to the results, 
the upregulated genes are significantly enriched in JAK-
STAT, GABAergic, tyrosine, and other common cancer 
pathways [53–55].

Figure 6 plots the distribution of genes and the expres-
sion states that are enriched in stomach acid secretion 
pathways. In ESCA samples, remarkable overexpression 
of more or less all regulatory genes occur which acti-
vates the stomach acid secretion pathway. In this case, 
major secretion of stomach acid generates a local acidic 
environment as a significant inflammatory inducer in 
ESCA samples. Moreover, extra biological pathways are 
significantly connected to cancer on digestive systems. 
Some of these extra biological pathway examples are 

smooth vascular muscle contraction, calcium signaling, 
insulin secretion, and differentiated cancer pathway. 
There is a significant relationship between the remain-
ing 3 pathways and cardiovascular illnesses and cardi-
ovascular issues, also inclusive of obesity and diabetes 
which is connected with an expanded esophageal cancer 
risk [56, 57].

According to Fig.  7a-d, upregulated genes exhibit 
inherently contrasting activities than the downregu-
lated genes. Figure  7a shows Gene Ontology-based 
enrichment results for downregulated genes. The vital 
obstructed biological functions can be considered as 
neutral migration and granulocyte migration. Figure 7b 
plots enrichment results over KEGG pathways for 
downregulated genes, where interleukin 17 (IL17) sign-
aling pathway, rheumatoid arthritis, lipid and athero-
sclerosis, and central carbon metabolism in cancer can 
be seen as examples of supressed pathways  [58–60]. 
In this case, the last 2 pathways are previously verified 
cancer pathways. The roles of immunology and inflam-
mation can be critical during the prognosis of ESCA, 
according to the first 3 pathways  [61, 62]. Similarly, 
Fig.  7c shows Gene Ontology-based enrichment find-
ings for downregulated genes in glioblastoma. The vital 
obstructed biological functions can be considered as 
neurotrophin receptor binding and monocyte extrava-
sation. KEGG pathway enrichment for glioblastoma is 
shown in Fig.  7d. According to the results, the down-
regulated genes are significantly enriched in Choline 
metabolism in cancer, axon guidance, Sphingolipid 
signaling pathway, etc [63–65].

Fig. 4  Contig level vs gene level analysis. Category-based heatmap of contigs on normal and tumor tissue samples in ESCA
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As in Fig.  8, almost all genes that are enriched in 
the proteoglycans over the cancer pathway are greatly 
downregulated in ESCA samples. In line with  [66], 
proteoglycans have an important role in the tumo-
rigenic attributes of esophageal squamous cell car-
cinoma. The remaining KEGG pathways that are 
enriched are PI3K-Akt signaling pathway, focal adhe-
sion, and ECM receiver interaction.

Differential usage analysis
On top of persistent differentially-expressed genes 
of both protocols, the discovery of multiple specified 
transcription events of only contigs protocol also takes 
place. The host gene of those transcriptional events has 
either the reverse expression direction as contigs or not 
differently-expressed at all. Disease-associated regula-
tory anomalies during transcription frequently go along 

Fig. 5  Frequently-upregulated genes functional enrichment in terms of 2 protocols. a, b logFC (Log fold change) is represented by decreasing 
order over the x-axis, whereas y-axis shows each function’s enrichment score in terms of Gene Ontology and KEGG pathways respectively for ESCA. 
c, d Similar enrichment scores and plots in terms of Gene Ontology and KEGG pathways respectively for glioblastoma
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with that DU event. So, we have thoroughly analyzed 
the whole set of contig protocol-specific DU cases. As 
seen in Fig.  3a, we have identified 148565 downregu-
lated contigs and 191423 upregulated contigs where 
7487 non-upregulated and 5352 non-downregulated 

contigs belong to hosts. Additionally, we have identi-
fied 8124 and 76234 upregulated and downregulated 
pairs of contigs and host genes respectively which 
exhibit a similar regulatory movement tendency. As 
seen in Figs.  9, 10 and 11b, we use Wilcoxon test  [48] 

Fig. 6  Frequently-upregulated genes functional enrichment in terms of 2 protocols. Sketch of KEGG pathway [49] where red nodes show 
the upregulated genes in ESCA



Page 11 of 22Eralp and Sefer ﻿BMC Cancer          (2024) 24:607 	

to calculate the expression difference between contigs 
and matching host genes for every DU contig-gene pair. 
Afterwards, screening the ten most statistically signifi-
cant contig-gene pairs took place.

As seen in Fig.  9, contig sequences exist on the left 
side, the corresponding host genes exist on the right 
side, and the gene expression heatmap of contigs and 
gene expression levels exist in the middle of the plot. 
The expression movement tendency of the main tran-
scripts is expressed via the heatmap at a gene level. 

Without any surprise, the contigs attributed to DU 
events change remarkably from their corresponding 
host genes. Figure  10a, b show the logFC  (Log fold 
change) values that correspond to gene levels in blue 
color, wheeras at a contig level, logFC is represented 
by red color for ESCA and glioblastoma respectively. 
For both ESCA and glioblastoma, these identified dif-
ferential genes are previously known to be affective in 
cancer formation and prognosis  [67, 68]. As seen in 
Fig.  11a, b, once we select the genes that correspond 

Fig. 7  Downregulated genes enrichment in terms of biological functions. a, b logFC (Log fold change) is represented by decreasing order 
over the x-axis, whereas y-axis shows each function’s enrichment score in terms of Gene Ontology and KEGG pathways respectively for ESCA. c, d 
Similar enrichment scores and plots in terms of Gene Ontology and KEGG pathways respectively for glioblastoma
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to the top 100 most significant contigs in accordance 
with DU p-values for biological functional enrichment, 
then we have additionally clarified these events bio-
logical activities. We demonstrate that DU events are 
largely part of the immune response and insulin secre-
tion for ESCA tumors. On the other hand, DU events 
are largely part of the brain morphogenesis and energy 
metabolism for glioblastoma.

Inferring new RNA events as prognosis measures
We have identified plenty of ESCA-associated transcrip-
tion events that include lincRNA, intron, split, SNV, 

among others by using mapping-free and alignment-
free approaches. We can use comparison tools to map 
the happenings of these events, and research has iden-
tified alternative splicing, SNV, and the remaining fac-
tors connected to the prognosis of ESCA. Nonetheless, 
as seen in Table 1, only a limited number of studies ana-
lyzed the connection between great many transcriptome 
events and the prognosis of ESCA simultaneously. Those 
transcription events associated with ESCA are treated 
as novel events since these events are previously unan-
notated. We run univariate Cox regression of various 
novel RNA event types in our study. Afterwards, we 

Fig. 8  Frequently-downregulated genes functional enrichment. Sketch of KEGG pathway [49] where green nodes show the downregulated genes 
in ESCA
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carried out a multivariate Cox regression analysis over 
the related events extracted by univariate Cox regres-
sion, and applied Kaplan-Meier  (KM) curves to bring 
out survival time variations among different risk samples 
as seen in Figs.  12  and  13 for ESCA and glioblastoma 
respectively.

In KM curves, there exists a horizontal axis for sur-
vival duration in terms of year and a vertical axis for the 
probability of survival. We color low-risk and high-risk 

samples with blue and red colors respectively. Here, we 
can see that different transcriptional event types that 
are detected by using an alignment-free approach have 
a high correlation in terms of prognosis. Particularly, 
we have identified unmapped transcripts related to the 
patients final survival. We examined those unmapped 
transcripts in detail by utilizing alignment tools. For 
the first alignment-based annotations, we used a splice-
aware aligner GSNAP. A different BLAST aligner is 

Fig. 9  DU events and analysis of the host genes. Heatmap for the topmost ten gene-contig pairs between 2 groups in ESCA

Fig. 10  DU events and analysis of the host genes logFC values comparison for every gene-contig pair for both ESCA and glioblastoma
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used for screening the unmapped events in detail. In 
terms of 72 unmapped events extracted by GSNAP, we 
could align 18 out of 70 events to the human genome 
via BLAST without considering the mismatches. 43 
contigs are found to be connected to bacteria living 
in the digestive system. Lastly, the remaining 11 con-
tigs do not have any known organism in the traditional 
databases. Figure  14A, B represent 2 unmapped con-
tigs, that are upregulated compared to the normal tis-
sues in ESCA samples. This upregulation proposes 
microbial infection as an important factor in esopha-
geal cancer’s start and prognosis. On the contrary, 
conventional alignment-based methods mostly ignore 
sequences which could not be aligned to a reference 
genome.

Neoantigen candidates
We have assessed sequences whose expressions are spe-
cific to tumor tissues instead of normal tissues for all 
transcription-based events. As seen in Fig. 15, we have 
inferred a considerable number of neoantigens in a very 
small fraction of tumor tissues for both ESCA and glio-
blastoma. Recurring neoantigens extracted in patients 
with tumors are considered to be clinically quite use-
ful  [69]. We apply a robust criterion to identify the 
most commonly occurring neoantigens over malignan-
cies: Firstly, neoantigens should exist in at least 50% 
of all tumor tissues when they lack in normal tissues. 
Secondly, we selected candidates over 1216 neoanti-
gens. The primary origins of those contig sequences 

are intronic, exonic, and intergenic regions. As seen 
in Fig.  16a, b, we have verified the expression of all 
recurring neoantigens over both ESCA and validation 
datasets.

Figure  15 outlines the frequency of neoantigens 
which is associated with the recurrence ratio in cancer 
tissues, from tiny to large for both ESCA and glioblas-
toma. According to the green barplot, more than half of 
the cancer tissues have neoantigens across both cancer 
types. The safety of those neoantigens has been estab-
lished as well by verifying the neoantigens expression 
across both ESCA and glioblastoma discovery and inde-
pendent validation datasets. In this case, the chosen 
neoantigens should not be expressed for any normal 
noncancerous tissue over the ESCA and glioblastoma 
discovery cohort. Even though a number of neoanti-
gens are still expressed silently in normal tissues, these 
antigens manifest a significantly lower expression ten-
dency than malignant tumor tissues in the independent 
dataset.

Meantime, an important discovery was that a num-
ber of ESCA and glioblastoma patients exhibit higher 
quantities of antigens that are specific to tumors than 
the remaining ones. In line with these results, immu-
nological subgroups might exist which respond quite 
well to the anti-tumor vaccines in patients with both 
cancer types at the immune response level. There-
fore, ESCA patients are partitioned into 2 subgroups 
depending on antigens specific to tumors. Then, 
as seen in Fig.  17, we assessed the burden of tumor 

Fig. 11  DU events and analysis of the host genes. Enriched biological functions upset plot for both ESCA and glioblastoma
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mutations and instability of the genome over those 2 
groups.

As can be anticipated, remarkable differences in CNVs 
and mutations exist among the 2 sample groups having 

different immunological subtypes. Subgroups that expressed 
extra tumor-specific antigens incorporate a greater number 
of CNVs and mutations. So, immunotherapy may be a bet-
ter option for patients within that category [70, 71].

Fig. 12  Survival analysis of multiple new events in ESCA where every panel matches with a single type of variant event. The red and blue curves 
define the patients survival results with varying risks
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Discussion
Here, we have focused on determining a great number 
of exogenous pathogenic microorganism sequences, 
esophageal cancer-associated variants, and new tran-
scripts without an annotation via a reference-free and 
alignment-free procedure of ESCA and glioblastoma 

single-cell RNA-seq dataset. Those transcription-asso-
ciated events exist as part of the whole genome, which 
include intergenic regions, coding regions, non-coding 
regions, etc. Conventional gene level transcriptome pro-
cedures could evaluate the biological processes associ-
ated with phenotypes from the gene level, without seeing 

Fig. 13  Survival analysis of multiple new events in glioblastoma where every panel matches with a single type of variant event. The red and blue 
curves define the patients survival results with varying risks
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the more detailed transcript level. On the other hand, 
traditional transcript level procedures count on proper 
alignment of reads to the genome, so these procedures 
may solely concentrate on the coding region’s variations 
without identifying the transcripts that are not anno-
tated. Even though recent research progress has focused 

on overcoming the reference sequence’s limits via de 
novo transcriptome assembly, such a de novo assembly 
procedure will cause a great many assembly errors as 
well. Additionally, the assembly procedure also requires 
aligning sequences to the assembled reference sequence 
afterward.

Fig. 14  Unmapped transcripts in ESCA that are aligned to bacteria via BLAST and the expression values of 2 representative contigs

Fig. 15  Estimation of neoantigens. The number of prospective neoantigens occurring in the patient population with different percentages 
in both ESCA and glioblastoma
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To our best knowledge, none of the existing stud-
ies has conducted a detailed analysis of the single-cell 
transcriptome datasets of esophageal and glioblas-
toma cancer tissues, and the existing studies have not 
assessed all transcripts over the whole genome in a 
systematic way. Consequently, our proposed analysis 
has great potential since we can gather different types 
of transcriptome events independently without tak-
ing their origins into account. In this case, by using a 
mapping-free analysis technique, we can discover the 
origins of new epitopes more properly. The identified 
tumor-specific antigens are especially expressed across 
several ESCA and glioblastoma patients and they have 
been reproduced in independent validations datasets. 
Our reference-free and alignment-free analysis has 
multiple different advantages. Firstly, the whole matrix 
dataset might be expressed as a single matrix dataset 
to efficiently carry out matrix operations, rather than 
following a more traditional approach that run every 
sample independently. So, we can better optimize for 
time and computational resources. Secondly, reference-
free and alignment-free approaches might be especially 
charming in metatranscriptomics, where RNAs are 
collected in an environment with unknown archaebac-
teria, bacteria, or eukaryotic species. Lastly, our pro-
cedure ensures that any RNA that exists particularly in 

a sample subset will be caught without considering its 
origins.

There are limitations to this current research. Firstly, 
plausible errors exist as part of assembling differen-
tially-expressed k-mers into contigs. Nonetheless, our 
k-mers length is 31 bp so the longest contig for a muta-
tion position after assembly is 61 bp. In this case, 61 bp is 
still greatly less than the full-length transcriptome. As a 
result, this study’s assembly procedure has a lower error 
probability compared with the de novo assembly. Even 
though transcripts could be evaluated at a more detailed 
level, we use Kallisto to evaluate the gene level’s quanti-
fication. Kallisto, as a reference-free approach, does not 
count on reference sequences so its accuracy is lower 
than the traditional quantification approaches. But, such 
performance decrement does not significantly affect 
our conclusions since our study’s results do not mainly 
depend on the gene level.

Conclusions
Traditional procedures that rely on aligning sequences to 
a reference have a number of limitations. However, most 
of the tumor formation and prognosis dynamics could 
not be demonstrated via alignment-based procedure 
results. The alignment-free and reference-free meth-
ods are more effective and broad variant callers, even if 

Fig. 16  Estimation of neoantigens. Expression of chosen neoantigens between cancer and normal tissues in both validation and discovery cohorts 
for ESCA
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Fig. 17  Copy number variation (CNV) and burden of mutations across 2 subgroups. A Mutational burden and the distribution of mutations 
among high-burden and low-burden subgroups. B CNVs throughout 24 chromosomes between 2 subgroups where orange and blue indicate 
deletion and duplication respectively
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they cannot fully replace the traditional methods with 
regard to accuracy. Those alignment-free approaches 
have many advantages in terms of the discovery of novel 
variants and complex genomic elements such as repeats. 
As a result, in the future, combining more conventional 
alignment-based and alignment-free procedures will have 
comprehensive promises to reveal tumor dynamics.
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