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Abstract 

Background  Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary 
aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related 
genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC).

Methods  Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were 
obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular group-
ings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create 
a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, 
TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, 
anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. 
A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature 
for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, 
and Transwell assays.

Results  A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten 
GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct 
the prognostic model of patients with EC. Based on GLRGs, the risk model’s prognosis and independent prognos-
tic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune 
cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value 
in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed 
in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC 
cell migration, invasion, and proliferation.

Conclusion  The GLRGs signature constructed in this study demonstrated significant prognostic value for patients 
with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.
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Introduction
Endometrial carcinoma (EC) is the second most common 
gynecological cancer in women worldwide [1]. Its preva-
lence and mortality are both rising annually, which poses 
a severe threat to women’s health [1]. The increasing 
incidence of EC is closely related to the increasing inci-
dence of obesity and diabetes worldwide [2]. Studies in 
epidemiology have demonstrated that obesity constitutes 
an independent risk factor for EC, with a positive correla-
tion observed between body mass index (BMI) and the 
incidence of this malignancy [3]. Moreover, metabolic 
disorders such as diabetes mellitus are related to the inci-
dence and adverse pathological features of EC [4]. The 
investigation of EC development, particularly the tumor 
metabolism mechanism, has emerged as a prominent 
research focus in molecular targeted therapy for EC [5]. 
Further elucidation of the molecular mechanisms under-
lying EC in metabolism holds significant clinical thera-
peutic implications.

The nutrients glucose (carbohydrate) and lipids play 
crucial roles in the body, closely intertwined with energy 
storage and supply, and are integral components of cel-
lular metabolic processes [6]. The process of tumor 
development involves the reprogramming of glycome-
tabolism (carbohydrate metabolism) and lipid metabo-
lism, which is intricately linked to tumor progression, 
invasion, metastasis, and immune modulation [7, 8]. 
Glycolysis is the predominant pathway of glycometabo-
lism in the human body. Tumor cells exhibit height-
ened glucose consumption to rapidly generate sufficient 
ATP for energy via glycolysis. Even under conditions of 
adequate oxygen availability, there is a propensity for 
glucose conversion into lactic acid, known as the War-
burg effect [9]. Consequently, the augmented glycolytic 
activity of malignant tumor cells can induce an acidic 
microenvironment surrounding them, fostering normal 
cell death while facilitating tumor cell angiogenesis and 
invasion [10]. The metabolic characteristics of the glyco-
metabolism pathway and mitochondrial function exhib-
ited significant alterations in EC [11]. Lipids play crucial 
roles in the composition of cellular membranes, energy 
metabolism, and synthesis of endocrine hormones [12]. 
The preservation of cell membrane structure and facili-
tation of cell signal transduction are critically dependent 
on cholesterol and phospholipids [13]. Lipids and their 
metabolic intermediates play a pivotal role in diverse cel-
lular signal transduction pathways implicated in cancer 
[14]. The dysregulation of lipid metabolism represents 
a pivotal metabolic alteration in the context of cancer. 
Lipid metabolism disorder can result in dysregulated 
expression of various genes and proteins, as well as per-
turbed cytokine profiles and disrupted signaling path-
ways [15]. Despite the correlation between the incidence 

and development of EC with glycometabolism and lipid 
metabolism [16–18], there remains uncertainty regard-
ing the molecular processes involved and the impact of 
associated genes on EC patient prognosis. Additionally, 
current research on abnormal glycometabolism and lipid 
metabolism in EC patients mainly consists of single-gene 
laboratory studies, with little exploration into gene clus-
ters associated with these metabolic processes.

The implementation of comprehensive treatment strat-
egies has significantly enhanced the overall prognosis 
of patients with EC; however, individuals experiencing 
recurrent and metastatic EC exhibit a dismal survival 
outlook under the current therapeutic regimen [19]. 
Moreover, currently there is a lack of robust biomark-
ers or predictive models that can accurately forecast the 
survival rate of patients with EC [20]. The conventional 
methods for tumor histology and morphology classifi-
cation fail to comprehensively capture the heterogene-
ity among EC cells and patients, leading to inadequate 
repeatability [21–23] and significant variations in prog-
nosis even within the same stage of EC [24, 25]. Reclas-
sification of tumors based on various criteria enables the 
classification of patients, thereby facilitating their man-
agement, treatment, and follow-up. The conventional 
classification of EC is important for diagnosing and treat-
ing patients. However, as disease research progresses, the 
limitations of traditional methods become more evident. 
Conventional classification heavily depend on clinical or 
histological features without fully considering genomic 
characteristics, which can lead to varying outcomes 
among patients with the identical EC classifications [26–
29]. Moreover, there is often an overlap between tissue 
type and FIGO grade, making it challenging to address 
tumor heterogeneity and resulting in subjective diagno-
ses that complicate clinical decision-making. Multiple 
factors, encompassing genomic and clinical aspects, play 
a pivotal role in the development and prognosis of endo-
metrial cancer; however, the existing classification system 
inadequately predicts the survival outcome of patients 
affected by this malignancy [30].

Due to the limitations of conventional classification 
and basic experiments, numerous bioinformatics analysis 
techniques have been extensively employed for the iden-
tification and characterization of genes associated with 
the progression of diverse cancer types. Our previous 
studies have focused on the domain of biomarker screen-
ing and bioinformatics analysis employing high-through-
put sequencing technology from public databases [31, 
32]. The emergence of pathogenic abnormalities stems 
from intricate network relationships among genes [33]. 
Therefore, in our study, we identified ten glycometabo-
lism and lipid metabolism-related genes (GLRGs) from 
the Genecards database to construct a reliable prognostic 
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signature for predicting overall survival (OS) and treat-
ment strategies. Our data demonstrated a significant cor-
relation between the GLRG-related prognostic signature 
and immune features, tumor mutational burden (TMB), 
as well as chemosensitivity. Furthermore, we successfully 
validated the impact of this representative gene model on 
EC cells in vitro.

Material and methods
Data collection for EC
We downloaded the processed data containing RNA 
sequences and clinical information (such as prognostic 
information) from The Cancer Genome Atlas (TCGA) 
(https://​portal.​gdc.​cancer.​gov/, accessed on 5 July 2023) 
[34] and the Genotype-Tissue Expression (GTEx) pro-
ject (https://​www.​gtexp​ortal.​org/​home/, accessed on 5 
July 2023) [35]. The primary EC patients with insufficient 
clinical data and follow-up information were excluded, 
resulting in the inclusion of 545 primary EC patients and 
78 samples from healthy individuals. According to gene 
annotation information in GENCODE, the Ensemble 
Gene was transformed into a Gene Symbol [36]. The Gen-
ecards database (https://​www.​genec​ards.​org/, accessed on 
6 July 2023) was utilized to retrieve a total of 714 GLRGs 
(Supplementary Table S1) [37]. Using the Maftools pack-
age, the somatic mutations of mRNAs were created 
using the Mutation Annotation Format (MAF) [38]. We 
obtained EC, or normal control endometrial tissues, fol-
lowing the approval of the ethics committee at Fujian 
Cancer Hospital.

Differential and prognostic analysis of GLRGs
We screened differentially expressed GLRGs using limma 
package (P<0.05 and |logFC|>1) [39]. The volcano plot 
for differentially expressed GLRGs was generated using 
the ggplot2 package. The Survminer package [40] was 
utilized to identify the optimal cut-point and select prog-
nostic GLRGs based on the expression level of differen-
tial GLRGs, survival time, and state.

Establishment of the GLRG‑related cluster and signature
Based on the differentially expressed GLRGs with prog-
nostic value, EC patients were grouped using the non-neg-
ative matrix factorization (NMF) clustering algorithm [41]. 
By leveraging expression levels of individual GLRGs and 
employing Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression prognostic coefficient [42], we have 
developed a risk-score (RS) model as follows: Risk Score 
=∑βgene×Expgene. In the RS formula, βgene is the LASSO 
regression coefficient of the GLRG, and Expgene signifies the 
expression level of the GLRG. The RS of each EC patient 
was calculated, and the median RS was used as the critical 
value to further divide the EC patients into high-risk group 

and low-risk group (high-risk group: RS≥median; low-risk 
group: RS < median). Considering the sample size and refer-
ring to previous literature [43, 44], the total samples (Total 
Set, n=545) were randomly divided into a Train Set (n=273) 
and a Test Set (n=272) in a one-to-one ratio using the ran-
dom sampling function in the R programming language 
to minimize information leakage and enhance model per-
formance evaluation accuracy. Initially, the risk scores for 
patients in the Training Set were computed using the afore-
mentioned formula. Subsequently, we employed the same 
methodology to calculate the risk scores of both the Testing 
Set and Total Set for validation purposes. The Kaplan-Meier 
curves were utilized to evaluate the survival outcomes of 
different risk groups. To assess the GLRG-related signa-
ture’s prediction power, we created ROC curves using the 
timeROC program. The autonomous prognostic relevance 
of the linked components, such as RS and clinical charac-
teristics, was confirmed by the Univariate and Multivariate 
Cox regression models. The calibration curve was used to 
confirm the construction of the visual nomogram and assess 
the risk model’s accuracy for use as a stand-alone prognos-
tic factor [45]. Besides, principal component analysis (PCA) 
[46] and t-distributed stochastic neighbor embedding 
(t-SNE) [47] were applied to test the effectiveness of the risk 
scores in differentiating EC patients.

Enrichment analysis of candidate genes
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were carried 
out utilizing the ClusterProfler package [48]. Gene Set 
Variation Analysis (GSVA) was conducted utilizing the 
GSVA package [49]. The Gene Set Enrichment Analysis 
(GSEA) pathway enrichment analysis was conducted to 
compare the two different groups [50].

Evaluation of immune activity and therapy for the two 
GLRG‑related risk groups
The immunological microenvironment has a significant 
role in the origin and evolution of EC. An evaluation of 
the immune-infiltrating cell abundance was conducted 
using the IOBR algorithm [51]. We utilized the TIDE 
algorithm to predict potential responses to immune 
checkpoint blockade (ICB) [52]. We employed the web 
platforms GenePattern and Submap to conduct a com-
parative analysis of immunotherapy disparities between 
the two risk groups [53]. The oncoPredict package [54] 
was utilized to evaluate the IC50 levels of chemotherapy 
drugs for patients with EC.

Screening significant GLRGs in EC using machine 
learning‑dependent integrative approaches
The most significant GLRGs among the GLRGs in the 
GLRG-related signature were further screened out by 
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integrating 12 machine learning (ML) algorithms and 
combining 113 algorithm combinations [55] to authen-
ticate GLRGs with high accuracy and stability between 
EC and normal samples. As previously mentioned, con-
sidering the sample size and referring to previous litera-
ture [43, 44], the total samples (All Set) were randomly 
and equally partitioned into a Train Set and a Test Set. 
The same Train Set was utilized to construct signatures 
among the 113 algorithms, and subsequently, the vali-
dation of these signatures was performed based on the 
calculation results obtained from both the same Test Set 
and All Set. The frequency of GLRGs observed in the 
113 algorithm combinations was computed, and subse-
quently, the GLRG with the highest occurrence rate was 
chosen for subsequent wet experiments.

Cell lines and cell culture
The endometrial epithelial cells (EECs) were preserved 
in our laboratory. The extensively employed EC cells, 
HEC-1A and Ishikawa, were obtained from the Meisen 
Chinese Tissue Culture Collections (Zhejiang, China) 
and preserved in our laboratory. McCoy’s 5A medium 
(Shanghai BasalMedia Technologies Co., Ltd., Shang-
hai, China) mixed with 10% fetal bovine serum (FBS) 
was used to cultivate HEC-1A cells. RPMI 1640 medium 
(Shanghai BasalMedia Technologies Co., Ltd.) containing 
10% FBS was used to cultivate Ishikawa cells and EECs. 
The cell culture medium was supplemented with strep-
tomycin at a concentration of 100 g/mL and penicillin at 
a concentration of 100 U/mL (Beyotime, Beijing, China). 
Cells were grown at 37°C in a 5% CO2 environment.

Quantitative real‑time PCR
The extraction of total RNA was performed using TRN-
zol Universal Reagent (Tiangen Biotech, Beijing, China). 
Reverse transcription was performed using FastKing 
gDNA Dispelling RT SuperMix (Tiangen Biotech, Bei-
jing, China). The reaction was conducted at a tempera-
ture of 42°C for a duration of 15 minutes to facilitate 
genome removal and reverse transcription, followed 
by an enzyme inactivation step at 95°C for 3 minutes. 
SuperReal PreMix Plus (Tiangen Biotech, Beijing, China) 
was utilized for quantitative real-time PCR (qRT-PCR). 
The initial denaturation step was performed at 95°C for 
15 minutes, followed by a total of 40 cycles consisting 
of denaturation at 95°C for 10 seconds and annealing/
extension at 60°C for 32 seconds in the RT-qPCR cycling 
conditions. The melt curve stage was programmed as 
follows: 95°C for 15 seconds, 60°C for 60 seconds, 95°C 
for 15 seconds, and 60°C for 10 seconds in accordance 
with the instructions provided in the kit. The primer 
sequences utilized in this study can be found in Supple-
mentary Table S2. The β-actin PCR product, with the size 

of 248 bp, exhibited a homogeneous melting temperature 
of approximately 87.5 °C. The HK2 PCR product, with 
the size of 87 bp, displayed the homogeneous melting 
temperature around 83 °C. The expression levels were 
calculated using the 2-ΔΔCt formula.

Cell transfection for EC cells
Observing the guidelines provided by the manufacturer, 
small interfering RNAs (siRNA) targeting HK2 and nega-
tive control RNAs (GenePharma, Shanghai, China) were 
employed for silencing HK2 expression using a GP-trans-
fect-mate (GenePharma, Shanghai, China) transfection 
reagent. The specific sequences for siRNA can be found 
in Supplementary Table S3.

Western blot assays
The total proteins were extracted using RIPA buffer sup-
plemented with a proteinase inhibitor cocktail (Beyotime, 
Beijing, China). Utilizing the BCA assay kit (Beyotime, 
Beijing, China), the protein content was determined. 
Polyacrylamide gel electrophoresis (SDS-PAGE) with 
the addition of sodium dodecyl sulfate was employed to 
separate the proteins, followed by their transfer onto the 
polyvinylidene fluoride membranes made from PVDF. 
After an hour of room temperature blocking with block-
ing solution, the membranes were incubated for an entire 
night at 4°C with primary antibodies targeting HK2 (dilu-
tion 1:5000, Cat No. 66974-1-Ig, Proteintech, China) and 
β-Actin (dilution 1:5000, Cat No. 81115-1-RR, Protein-
tech, China). Following a wash, the membrane was left at 
room-temperature for an hour to be incubated with the 
secondary antibody (dilution 1:10000, ZB-2306, ZSGB-
BIO, China). An improved chemiluminescent substrate 
was used to identify protein bands.

CCK‑8 assays for EC cells
After transfection, the transfected cells were cultured 
for four days in 96-well plates with a seeding density of 
2000 cells/well and 100 μl of complete growth medium. 
The Counting Kit-8 (APExBIO, Houston, TX, USA) was 
utilized to measure the optical density (OD) at 450 nm 
using a computerized microplate reader at time points 
of 0-hour, 24-hour, 48-hour, 72-hour, and 96-hour in 
accordance with instructions. The groups were equipped 
with three multiple wells each and each trial was repeated 
in triplicate.

Scratch wound‑healing assays for EC cells
Upon reaching approximately 100% confluency on the 
6-well plates, the EC cells were gently scraped with a 
200µl pipette tip, and the suspended cells were subse-
quently removed with PBS. Afterwards, the EC cells were 
cultured in a serum-free medium at 37°C with 5% CO2. 
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Subsequently, three non-overlapping views of each well 
were randomly captured at both the 0-hour and 48-hour 
time points. The pictures were imported into Image J, an 
image processing program, and examined. The follow-
ing formula calculates the rate of wound healing: wound 
healing rate = (A0h–A48h)/A0h×100%, where A0h is the 
initial wound area and A48h is the wound area left at the 
end of the healing process.

Transwell assays for EC cells
The Transwell assays were conducted using chambers 
(pore size, 8 µm) equipped with polycarbonate filters. In 
the upper compartment, 2×105 EC cells were put in 300 μL 
of serum-free medium, while the lower chamber contained 
500 μL of McCoy’s 5A media supplemented with 30% FBS. 
For the invasion experiment, Matrigel was applied to the 
chamber. The EC cells were cultured for 48 hours at a tem-
perature of 37°C in an environment containing 5% CO2. 
The cells that were unable to pass through the transwell 
were removed using cotton swabs. Following a ten-minute 
fixation in 4% paraformaldehyde, the cells that migrated to 
the lower chamber were subsequently stained with 0.1% 
crystal violet for five minutes. Finally, cell quantification on 
the lower surface was calculated using a microscope.

Colony formation assays for EC cells
In 6-well culture plates, 500 cells were added to each well 
for a 14-day inoculation period. When discernible clones 
appeared, the supernatant was removed. After being 
cleaned twice with PBS, it was fixed for 15-20 minutes by 
adding 1 mL of 4% paraformaldehyde fixative. After remov-
ing the supernatant, the sample was subjected to two rounds 
of PBS washing. Subsequently, 1 mL of crystal violet stain-
ing solution was added and incubated for a duration of 15 to 
20 minutes. The culture plates were carefully rinsed with tap 
water, allowed to dry naturally, and then photographed, with 
the number of clones that could be seen being tallied.

Apoptosis assays for EC cells
The apoptosis assays were carried out according to 
the instructions of the manufacturer (MedChemEx-
press, NJ, USA). Following transfection, 195 μl of bind-
ing buffer was used to resuspend the cells after they had 
been cleaned with PBS and digested with trypsin without 
EDTA. Subsequently, the cells were stained with 10 μl of 
Annexin V-FITC and 5 μl of propidium iodide (PI), fol-
lowed by a dark incubation at room temperature for 15 
minutes. The apoptosis of cells was quantified using a 
flow cytometer (BD Biosciences, New York, USA).

EdU cell proliferation assays for EC cells
HK2 knock-down and the matching control EC cells 
were seeded at a density of 2×105 cells/well in 24-well 

plates and cultivated for 24 hours. The assessment of cell 
proliferation was conducted using the EdU analysis kit 
(APExBIO, Houston, TX, USA) in accordance with the 
provided instructions.

Statistical analysis of this study
The statistical analysis was conducted using the R pack-
age (v 4.0.2) or GraphPad Prism (v 9.0). The assay was 
performed in triplicate and the results were presented 
as Mean ± SD. The normality of data distribution was 
analyzed by normality tests (D’Agostino-Pearson omni-
bus, Anderson-Darling, Shapiro-Wilk and Kolmogorov-
Smirnov) provided by GraphPad Prism. The survival 
outcome between two subgroups was compared using 
Kaplan-Meier curves and the log-rank test. The Spear-
man correlation coefficient was employed to ascertain 
the association between the two variables. The two-
tailed Student’s t-test was employed for comparing data 
between two groups, while the one-way ANOVA test was 
utilized for analyzing data from more than two groups. 
Additionally, specialized analyses were detailed in the 
corresponding section. The threshold for determining 
a statistically significant difference was set at P<0.05, 
adhering to the conventional criterion.

Results
Expression and functional analysis of GLRGs
The analysis revealed a total of 317 differentially expressed 
GLRGs in EC (Fig.  1A), including 257 highly expressed 
GLRGs and 60 lowly expressed GLRGs in EC (Supple-
mentary Table S4). The functions of the 317 GLRGs were 
analyzed using GO (Fig. 1B) and KEGG analyses (Fig. 1C). 
The 317 differential GLRGs of EC demonstrated signifi-
cant enrichment across multiple terms, such as fatty acid 
metabolic process, lipid localization, lipid catabolic pro-
cess, sterol metabolic process and so on (Fig. 1B). Addi-
tionally, KEGG analysis revealed significant enrichment of 
the 317 differentially expressed genes related to metabo-
lism in EC within various metabolic pathways, including 
Central carbon metabolism in cancer, Propanoate metab-
olism, Glycolysis/Gluconeogenesis, Fatty acid metabo-
lism, Pyruvate metabolism, Carbon metabolism, Citrate 
cycle (TCA cycle) and so on (Fig. 1C).

Molecular clusters based on GLRGs
The NMF method was used to establish molecular sub-
types for EC. According to cophenetic, dispersion, and 
silhouette, the selection of two clusters was the ideal 
number (Supplementary Figure S1A-B). The patients 
with EC were categorized into GLRG-related Cluster 1 
(C1) and Cluster 2 (C2). The prognosis of the two GLRG-
related clusters was further examined. The prognosis of 
EC patients in C2 was observed to be more favorable, 
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whereas EC patients in C1 exhibited a poorer progno-
sis (Fig. 1D). We analyzed differentially expressed genes 
(DEGs) across C1 and C2 to look into the biological 
role of the GLRG-related clusters. Based on GO terms 
(Fig.  1E) and KEGG pathways (Fig.  1F), we identified 
that these DEGs were associated with crucial biological 
processes, including DNA replication, DNA−templated 
DNA replication, Cell cycle, Fatty acid metabolism, 
GABAergic synapse, and so on.

Construction and validation of the risk model based 
on GLRGs
The 227 prognostic GLRGs (Supplementary Table S5) 
utilized for conducting LASSO Cox analysis, thereby 
constructing the prognostic GLRG-related signature. The 
λ selection diagram was shown in Fig. 2A-B. A total of ten 
GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, 
SLC16A1, HK2, LPCAT1, and PGR-AS1) were selected 
for the construction of the risk model (Fig.  2C). Given 
the pivotal role of protein interactions in determining 
protein function, we used the STRING database (https://​
cn.​string-​db.​org/, accessed on 24 March 2024) to ana-
lyze in detail the interrelationship and nature of the ten 
GLRGs in the risk model (Supplementary Figure S2A). In 
the STRING database, the analyzed gene-encoded pro-
teins formed a closely interconnected protein-protein 
interaction network comprising 5 edges and 9 nodes (PPI 
enrichment p-value:0.00349; average node degree:1.11, 
average local clustering coefficient:0.444). The protein-
protein interactions were graphically depicted as edges, 
with the strength of these interactions indicated by the 
assigned weights on each edge. In this particular context, 
edges represented protein-protein associations that sig-
nify precise and significant connections. In other words, 
although physical attachment is not necessarily implied, 
these proteins collaborate to facilitate a shared biological 
function. Our analysis revealed a significant enrichment 
of genes encoded by the selected participants in a specific 
Cellular Component, as well as two distinct Subcellular 
localizations and two Protein Domains.

Survival analysis showed that two GLRGs (ESR1 and 
PGR-AS1) were protective factors for HR<1, and eight 
GLRGs (AUP1, ERLIN2, ASS1, OGDH, BCKDHB, 

SLC16A1, HK2, and LPCAT1) were risk factors for HR>1 
(Fig.  2C). The EC patients in the Train (Fig.  2D), Test 
(Fig. 2E), and Total (Fig. 2F) sets were split into high-risk 
group and low-risk group based on the median risk score. 
The correlation between the risk score and survival prog-
nosis was evaluated by generating Kaplan-Meier curves. 
The distribution of risk scores in the two risk groups for 
the Train (Supplementary Figure S  2B), Test (Supple-
mentary Figure S 2C), and Total ( Supplementary Figure 
S 2D) sets were illustrated in Supplementary Figure S 2B-
D. The overall survival (OS) of high-risk EC patients was 
significantly lower than that of the low-risk group in the 
Train (Fig. 2D), Test (Fig. 2E), and Total sets (Fig. 2F). The 
accuracy of the risk model in predicting survival status 
was further confirmed by consistent findings regarding 
progression-free survival (PFS, Supplementary Figure 
S  3). The time-varying ROC curve demonstrated the 
robustness of the prognostic GLRG-related signature in 
predicting 1-year, 3-year, 5-year, 7-year, and 9-year sur-
vival for EC in the Train (Fig.  2G), Test (Fig.  2H), and 
Total (Fig. 2I) sets.

Comparison of clinical features and GLRG‑related signature
The expression levels of eight GLRGs (AUP1, ERLIN2, 
ASS1, OGDH, BCKDHB, SLC16A1, HK2, and LPCAT1) 
were higher in EC patients with high RSs, while the 
expression levels of two GLRGs (ESR1 and PGR−AS1) 
were observed to be downregulated in EC patients with 
low-risk scores (Fig.  3A; Supplementary Figure S4). EC 
patients with high-risk scores exhibited advanced age, 
higher stages and grades, as well as a higher positive rate 
of lymph node metastasis (LNM) overall (Fig.  3B). The 
majority of patients with low-risk scores were classified 
as Cluster 2 (Fig.  3B). Furthermore, the older patients 
(Fig.  3C), those with higher Grade (Fig.  3D), Cluster 1 
(Fig.  3E), and LNM-positive patients (Fig.  3G) exhib-
ited elevated risk scores. However, no statistically sig-
nificant difference was found in terms of Stage (Fig. 3F). 
According to the curve, the C-index (Fig. 3H) and AUC 
(Fig. 3I) of the risk score exhibited superior performance 
compared to other clinical features, indicating stronger 
predictive power and higher confidence in the GLRG-
related signature.

Fig. 1  Expression and functional analysis of GLRGs. A Volcano map of differentially expressed GLRGs in EC. The red dots represented highly 
expressed genes, and the green dots represented low-expressed genes. B The GO functional enrichment analysis of the differential GLRGs. The size 
of the dots indicates the number of genes attributed to the corresponding category. The color of the dots represented the q value. C KEGG pathway 
analysis of the differentially expressed GLRGs. The color of the bars represented the q value. D The survival curves of the molecular subtypes. The red 
curve represented Cluster I and the blue curve represented Cluster II. E The GO functional enrichment analysis of the differentially expressed genes 
between Cluster I and Cluster II. The size of the dots indicates the number of genes attributed to the corresponding category. The color of the dots 
represented the q value. F KEGG pathway analysis of the differentially expressed genes between Cluster I and Cluster II. The color of the bars 
represented the q value

(See figure on next page.)

https://cn.string-db.org/
https://cn.string-db.org/
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Fig. 1  (See legend on previous page.)



Page 8 of 21Lin et al. BMC Cancer          (2024) 24:571 

Additionally, the GLRG-related signature significantly 
distinguished patients with EC, as demonstrated by PCA 
(Fig.  4A) and t-SNE (Fig.  4B) analyses. Furthermore, 
the Univariate (Fig.  4C) and Multivariate (Fig.  4D) Cox 
regression analyses showed that the risk model indepen-
dently influences the prognosis of patients with EC. The 
nomogram we constructed can be visually presented in 
Fig.  4E. The calibration curve was used to evaluate the 
accuracy of the nomogram in predicting overall survival 
(OS), and the closer to the ideal matching line or gray 
line, the better the matching effect (Fig. 4F).

We conducted clinicopathological stratified analy-
sis to investigate the prognostic potential of the GLRG-
related signature with respect to Age, Grade, Stage, 

GLRG-related Cluster and LNM. Our findings dem-
onstrated a significantly lower overall survival rate for 
high-risk patients compared to low-risk patients in vari-
ous subgroups of clinical pathologies, including Age<60 
(Fig. 5A), Age>=60 (Fig. 5B), Grade I-II (Fig. 5C), Grade 
III (Fig.  5D), Stage I-II (Fig.  5E), Stage III-IV (Fig.  5F), 
Cluster I (Fig.  5G), Cluster II (Fig.  5H), LNM Negative 
(Fig. 5I) and LNM Positive (Fig. 5J).

Functional pathways of the risk groups based on GLRGs
The GSVA algorithm-based functional pathway 
enrichment analysis revealed 28 pathways with sig-
nificant variations between the two risk groupings 
(Fig. 6A). The low-risk group exhibited enrichment in 

Fig. 2  Construction and validation of the risk model based on GLRGs. A Cross-validation for tuning the parameter selection in the LASSO 
regression. B LASSO regression of the ten prognostic GLRGs. C The ten prognostic GLRGs extracted by Univariate Cox regression analysis were 
shown in the forest map. D-F The K-M survival curves of Train Set (D), Test Set (E) and Total Set (F) based on the GLRG-related risk model. The red 
curve represented the high-risk group, and the blue curve represented the low-risk group. G-I Time-dependent ROC curve analysis of Train Tet (G), 
Test Set (H) and Total Set (I)
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several pathways related to metabolism, such as Lin-
oleic Acid Metabolism, Ether Lipid Metabolism, Pri-
mary Bile Acid Biosynthesis, Tyrosine Metabolism, 
Alpha Linolenic Acid Metabolism, and Drug Metabo-
lism Cytochrome P450 (Fig. 6A). Additionally, a num-
ber of pathways linked to metabolism were enhanced 
in the high-risk group, such as Pyruvate Metabolism, 
Alanine Aspartate and Glutamatemetabolism, and 
Glyoxylate And Dicarboxylate Metabolism (Fig.  6A). 
The differentially expressed genes (DEGs) of the risk 
groups were investigated. The results of GO analysis 
revealed a significant enrichment of these DEGs in 
several crucial biological processes (Fig. 6B). The low-
risk group had 45 highly enriched pathways, while the 
high-risk group had 140 significantly enriched path-
ways based on the GSEA analysis. Notably, our analysis 

revealed a significant association between low-risk 
scores and several pivotal metabolic processes, includ-
ing Fatty Acid Metabolism, Riboflavin Metabolism, 
and Tyrosine Metabolism (Fig.  6C). Additionally, 
the high-risk scores were associated with Porphyrin 
And Chlorophyll Metabolism and Starch and Sucrose 
Metabolism (Fig. 6D).

Evaluation of mutations between the two GLRG‑related 
risk groups
The analysis of mutational data from the TCGA-UCEC 
cohort revealed a higher tumor mutation burden (TMB) 
in the low-risk group compared to the high-risk group, as 
shown in Fig. 7A. Based on the optimal cut-point deter-
mined for TMB levels, EC patients were categorized into 
two groups (low-TMB or high-TMB). We found a more 

Fig. 3  Comparison of clinical features and GLRG-related signature. A Heatmap of the expression levels of the ten GLRGs contained 
in the GLRG-related signature. B The pie chart showing the proportion of patients in the two risk groups for each clinical feature. C-F Differences 
in risk scores among the clinical features, including Age (C), Grade (D), Cluster (E), Stage (F), and LNM (G). H Concordance Index curves of risk score 
and clinical features. I The AUC of risk score and clinical characteristics
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favorable prognosis for EC patients in the high-TMB 
group (Fig.  7B). Our study also revealed that patients 
with EC had an increased risk when presenting both low 
TMB levels and high risk scores (Fig. 7C). The waterfall 
diagram visually illustrates the top 15 mutated genes 

(Fig.  7D-E), highlighting a molecular disparity between 
risk groups. The patients with low risk scores exhibited 
the highest mutation rate of PTEN (Fig.  7D), while the 
patients with high risk scores demonstrated the highest 
mutation rate of TP53 (Fig. 7E).

Fig. 4  Clinical value of risk score by independent prognostic analysis. A PCA analysis of the two risk groups. B t-SNE analysis of the two risk groups. 
C The Univariate analysis of risk model and clinical features. D The Multivariate analysis of risk model and clinical features. E The Nomogram model 
based on risk model and clinical features. F The calibration curve of the risk model
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Fig. 5  The clinicopathological stratified analysis exploring the prognostic capacity of the GLRG-related signature. A-H The K-M survival curves of EC 
patients in the risk groups considering clinicopathology subgroups, including Age<60 (A), Age>=60 (B), Grade I-II (C), Grade III (D), Stage I-II (E), 
Stage III-IV (F), Cluster I (G), Cluster II (H), LNM Negative (I), and LNM Positive (J)
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Evaluation of immune activity and immunotherapy 
for the two GLRG‑related risk groups
To further investigate the association between immune activ-
ity and GLRG-related signature, we employed computational 
methods provided by the IOBR R package, including CIBER-
SORT, EPIC, ESITMATE, MCPcounter, quanTIseq, TIMER, 
and xCell. Overall, notable disparities were observed in the 
immune microenvironment between the two risk groups 
associated with GLRG (Fig.  8A), encompassing dendritic 
cells activated, T cells follicular helper, CD4 T cells, CAFs, 
CD8 T cells, Endothelial cells, and so on. However, there was 
no discernible difference between the two GLRG risk groups’ 
immunotherapy responses (Fig. 8B-D).

Drug susceptibility analysis for the two GLRG‑related risk 
groups
The drug susceptibility was compared between the two risk 
groups associated with GLRG. We observed significantly 

higher IC50 levels of six commonly used chemotherapy 
drugs for patients in the high-risk group, including Cisplatin 
(Fig. 9A), Cyclophosphamide (Fig. 9B), Cytarabine (Fig. 9C), 
Docetaxel (Fig.  9D), Paclitaxel (Fig.  9E), and Tamoxifen 
(Fig. 9F). These results implied that drug susceptibility and 
a high risk score are negatively correlated. The drug respon-
siveness was evaluated in relation to the expression levels 
of the ten GLRGs employing Spearman’s correlation coeffi-
cients (Fig. 9G). Our data demonstrated a positive correla-
tion between the levels of ASS1 and OGDH with multiple 
drugs, such as Cyclophosphamide, Paclitaxel, Docetaxel, 
and Cytarabine (Fig.  9G). On the contrary, the levels of 
AUP1, ESR1, and PGR−AS1 were negatively correlated with 
several drugs, such as Cytarabine and Paclitaxel(Fig. 9G).

The expression of GLRGs in the risk model
The expression of the ten GLRGs in EC was examined 
using quantitative real-time PCR, analyzing ten pairs of 

Fig. 6  Functional pathways of the risk groups based on GLRGs. A The GSVA analysis of two risk subgroups. B GO analysis between high-risk group 
and low-risk group. C The top five significant enrichment pathways in the low-risk group by GSEA enrichment analysis. D The top five significant 
enrichment pathways in the high-risk group by GSEA enrichment analysis
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clinical samples comprising EC and normal control endo-
metrial tissues. In the TCGA cohort, with the exception 
of PGR-AS1 (which exhibited lower expression in tumors, 
the remaining nine GLRGs exhibited significantly higher 
expression levels in EC tissues (Supplementary Figure 
S 5). Our findings (Supplementary Figure S 6) were basi-
cally consistent with the findings reported in TCGA.

Knockdown of HK2 suppresses the proliferation, migration, 
invasion, and promotes the apoptosis of EC cells
To further refine the selection of the most significant 
GLRG among the ten GLRGs in the GLRG-related sig-
nature for the subsequent wet experiment, a total of 
113 combinations of machine learning algorithms were 
employed based on the same Train, Test, and All sets. 

Fig. 7  Evaluation of mutation between the two GLRG-related risk groups. A The level of TMB between high-risk group and low-risk group. B 
Survival analysis of the different groups stratified by TMB. C Survival analysis of distinct groups stratified by both TMB and signature. D-E The 
waterfall plot of somatic mutation features established with low (D) and high (E) risk scores



Page 14 of 21Lin et al. BMC Cancer          (2024) 24:571 

The findings demonstrated that the AUC values of each 
model exhibited consistently high performance across 
the Train, Test, and All sets (Supplementary Figure 
S7). The frequency of GLRGs observed in the 113 algo-
rithm combinations was computed, and we discovered 
that PGR-AS1, LPCAT1, HK2, and AUP1 exhibited the 
highest occurrence among the 113 algorithm combina-
tions (Fig.  10A). According to the data obtained from 
TCGA, we observed a significantly differential expres-
sion of HK2 compared to other GLRGs in EC (P<0.0001, 
Fig. 10B, Supplementary Figure S 5). Notably, HK2 exhib-
ited significantly differential expression compared to 
other GLRGs in the surgically collected tissues (P<0.01, 
Fig. 10C, Supplementary Figure S 6). Hence, we selected 

HK2 for the follow-up wet experiment. From quantita-
tive real-time PCR (P<0.0001) and western blot assays 
(P<0.05), we discovered that HEC-1A cells had consid-
erably higher levels of HK2 expression (Fig.  10D). We 
transfected HK2-siRNA into HEC1A cells to investigate 
the functions of HK2 in EC cells. The knockdown effi-
ciency of HK2 was measured, and HK2-siRNA-2(si2) was 
the sequence with the highest efficiency (P<0.001 and 
P<0.05, respectively), therefore, si2 was used in the sub-
sequent functional studies (Fig. 10E). The CCK-8 assays 
(P<0.001, Fig.  10F), colony formation assays (P<0.05, 
Fig.  10G), and EdU assays (P<0.05, Fig.  10H) showed 
that the viability and proliferation of EC cells were inhib-
ited after decreasing the expression level of HK2. The 

Fig. 8  Evaluation of immune activity and immunotherapy for the two GLRG-related risk groups. A Analysis of immune activity between the two risk 
groups using CIBERSORT, EPIC, ESITMATE, MCPcounter, quanTIseq, TIMER and xCell. *P< 0.05. B The ICB response rates for the two risk groups. C The 
level of the TIDE scores for the two risk groups. D The subclass map showing the immunotherapeutic responses in different risk groups
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Fig. 9  The differences in the chemotherapy response of common chemotherapy drugs between the high-risk group and low-risk group. A-F 
Relationships between risk scores and IC50 level of Cisplatin (A), Cyclophosphamide (B), Cytarabine (C), Docetaxel (D), Paclitaxel (E), and Tamoxifen 
(F). G The Spearman’s correlation coefficients between drug susceptibility and expression levels of the ten genes in the GLRG-related risk model
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transwell assays (P<0.01, Fig.  10I) and scratch wound-
healing assays (P<0.05, Fig.  10J) revealed a significant 
reduction in the migration and invasion capacity fol-
lowing HK2 knockdown. In addition, the knockdown of 
HK2 resulted in a significant increase in apoptosis of EC 
cells (P<0.05, Fig. 10K), as demonstrated by the apoptosis 
assays. Hence, HK2 is an oncogenic driver that facilitates 
the progression of EC.

Discussion
Aberrant glycometabolism and lipid metabolism can 
exert diverse influences on the development and progres-
sion of EC. For instance, elevated blood glucose levels 
can elicit insulin resistance, a condition characterized by 
reduced sensitivity of insulin-responsive tissues to insu-
lin, leading to elevated concentrations of both insulin and 
glucose in the bloodstream. Given that insulin serves as 
the primary anabolic hormone in the body and exerts 
its influence on cell proliferation [56], thereby initiating 
a range of physiological processes associated with car-
cinogenesis, numerous studies have established a corre-
lation between insulin resistance, incidence of EC, and 
diverse biological mechanisms [7, 57, 58]. The develop-
ment of insulin resistance can be induced not only by 
hyperglycemia but also by obesity, potentially through 
the promotion of chronic inflammation in adipose tissue 
and an increase in systemic insulin secretion [59]. Obese 
individuals exhibit a substantial augmentation in adipose 
tissue, which actively secretes hormones and adipokines 
such as leptin and adiponectin. Reduced levels of lep-
tin, elevated circulating adiponectin, and an increased 
ratio of adiponectin to leptin have been associated with 
a decreased risk of EC [60]. Another study demonstrated 
a positive correlation between elevated leptin levels and 
the progression of EC [61], and cisplatin may potentially 
exert its therapeutic effects on EC through modulation 
of the leptin pathway [62]. As previously mentioned, 
numerous contemporary studies are currently focusing 
on investigating the impact of aberrant glycometabo-
lism and lipid metabolism on EC. Numerous physiologi-
cal and pathological processes in  vivo exhibit intricate 
associations with gene expression and its regulation. 
However, there is currently no established and accurate 

predictive signature associated with glycometabolism 
and lipid metabolism-related genes (GLRGs) for prog-
nosticating the outcomes of patients with EC and guiding 
treatment decisions.

A comprehensive consensus on the risk factors influ-
encing the prognosis of EC patients is yet to be estab-
lished. In this study, we conducted a comprehensive 
analysis of the expression profiles of 714 GLRGs in EC 
using data obtained from the Genecards and TCGA 
databases. Consequently, we identified differentially 
expressed GLRGs exhibiting significant prognostic value. 
The prognostic signature of GLRGs was further estab-
lished using LASSO Cox regression analysis and subse-
quently validated for its independent prognostic value. 
The conventional tumor histology and morphology clas-
sification methods fail to capture the full extent of het-
erogeneity among tumor cells and patients, resulting in 
poor repeatability and significant variations in progno-
sis for the same type of tumor. Recent advancements in 
molecular research on EC have unveiled the genomic 
alterations associated with its presence, thereby offer-
ing valuable insights into the pathogenesis of the dis-
ease. Molecular testing holds significant potential in 
the early detection of EC or precursor lesions and in 
guiding individualized treatment strategies for EC [63]. 
The novelty of our study lies in its integration of genes 
associated with glycometabolism and lipid metabolism, 
thereby enhancing the precision and generalizability of 
the predictive model. Based on the GLRG-related signa-
ture, patients with EC were stratified into high-risk and 
low-risk groups. The overall survival (OS) of high-risk 
EC patients was significantly inferior to that of the low-
risk group, even after accounting for clinical factors, as 
demonstrated across the Train, Test, and Total sets. The 
accuracy of the risk model in predicting survival status 
was further validated by consistent findings pertaining to 
progression-free survival (PFS). The time-varying ROC 
curve exhibited the resilience of the prognostic GLRG-
related signature in accurately predicting survival rates at 
intervals of 1 year, 3 years, 5 years, 7 years, and 9 years for 
EC patients across all three sets - Train Set, Test Set, and 
Total Set. In addition, our study revealed a strong associ-
ation between higher risk scores, calculated based on the 

(See figure on next page.)
Fig. 10  Knockdown of HK2 suppresses the proliferation, migration, invasion, and promotes the apoptosis of EC cells. A The frequency of GLRGs 
observed in the 113 algorithm combinations. B The expressed of HK2 in EC based on the data obtained from the TCGA database. C The expressed 
of HK2 in EC based on clinical samples from collected surgical tissue. D The expression of HK2 in EECs and EC cells. E The knockdown efficiency 
of HK2 in EC cells. F CCK-8 assays of NC and the si2 groups to detect cell viability. The data marked with ns or asterisks were presented as mean ± SD 
(n=3) and subjected to ANOVA analysis. ns: not significant, **P < 0.01, and ***P < 0.001 compared to the NC group at the respective time points (0h, 
24h, 48h, 72h and 96h). G Colony formation assay. H EdU staining were employed to assess cell proliferation. I Cell migration and invasion measured 
through transwell assay. J Wound healing assay. K Flow cytometry detected cell apoptosis. ns: not significant, *P< 0.05, **P< 0.01, ***P< 0.001, 
****P< 0.0001
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Fig. 10  (See legend on previous page.)
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GLRG-related signature, and advanced age, higher stages 
and grades, as well as an elevated rate of lymph node 
metastasis overall in patients with EC. The risk score’s 
C-index and AUC exhibited superior performance in 
comparison to other clinical features (Age, Grade, Stage, 
Cluster, and LNM), thereby indicating a stronger predic-
tive power and higher confidence in the GLRG-related 
signature. Furthermore, the Multivariate Cox regression 
analysis revealed that the GLRG-related signature exerts 
an independent influence on the prognosis of patients 
with EC. Therefore, the GLRG-related signature estab-
lished in our study facilitates risk assessment, risk strati-
fication, and prognostication for EC patients based on 
their individual characteristics, thereby equipping clini-
cians with a valuable tool to evaluate the prognosis of EC 
and develop appropriate follow-up strategies.

In clinical practice, the implementation of tailored 
treatment approaches for stratified patients is crucial in 
enhancing patient prognosis. Tumor immunotherapy 
represents a therapeutic approach aimed at inducing 
immune system activation and preventing tumor cells 
from evading immune surveillance [64]. The challenges 
of immunotherapy for EC persist in terms of limited 
response rates, incidence of adverse reactions, and the 
inability to predict individual efficacy [65]. The immune 
microenvironment exhibited notable disparities between 
the two risk groups distinguished by the GLRG-related 
signature overall. However, no discernible disparity in 
immunotherapy responses was observed between the 
two risk groups based on GLRG. Interestingly, the IC50 
levels of six commonly employed chemotherapeutic 
agents were found to be significantly lower in EC patients 
belonging to the low-risk group, suggesting a heightened 
sensitivity towards these drugs within this particular sub-
group. Among them, Cisplatin exerts inhibitory effects on 
the DNA replication of EC cells, leading to detrimental 
consequences on the structural and functional integrity 
of DNA [62, 66]. Paclitaxel exerts its effects by promoting 
the inhibition of tubulin polymerization and maintaining 
tubulin stability, thereby further suppressing tumor cell 
proliferation [67]. Tamoxifen, a nonsteroidal anti-estro-
gen drug, exerts its inhibitory effect on the proliferation 
of EC cells by competitively binding to estrogen receptors 
and antagonizing estrogen signaling [68]. Regardless of 
the stage of endometrial cancer, monotherapy has limited 
efficacy, necessitating adjuvant therapy and combination 
chemotherapy regimens to enhance treatment outcomes 
and prognosis. Therefore, our study also holds significant 
implications for guiding clinical drug utilization.

In order to promote the application of our established 
risk model, we conducted in  vitro experiments on the 
optimal gene (HK2) within the GLRG-related signa-
ture. The rate of glycolysis is primarily regulated by 

hexokinase, which serves as the initial limiting enzyme 
in this metabolic pathway. This family of exoglucose-
phosphorylase enzymes exhibits a wide distribution 
across various organisms. The most active isoenzyme 
within this enzyme family, hexokinase 2 (HK2), plays 
a pivotal role in glucose metabolism [69]. According 
to previous studies, HK2 exhibits high expression lev-
els in various malignancies [70], including breast [71], 
liver [72], colorectal [73], pancreatic [74], and cervical 
cancers [75]. The heightened glycolytic rate of tumor 
cells can be attributed to their elevated expression of 
HK2 [76]. The inhibition of HK2 knockdown not only 
impeded the tumorigenic growth of glioblastoma, 
medulloblastoma, and renal cell carcinoma [77–79], 
but also demonstrated anti-angiogenic effects in pan-
creatic cancer cells [80]. Numerous inhibitors of HK2 
have been developed, including the competitive inhibi-
tor 2-deoxyglucose (2-DG) and the catalytic inhibitors 
3-bromopyruvate (3-BrPyr) and clonidamine. In vari-
ous in  vitro and in  vivo tumor models, multiple com-
pounds effectively target HK2, inducing its dissociation 
from mitochondria and subsequently initiating apopto-
sis in tumor cells [81]. The treatment of type 2 diabetes 
involves metformin binding to the HK2 and G-6-P sites, 
resulting in the dissociation of HK2 from mitochondria 
and facilitating cellular apoptosis. The utilization of 
metformin as a pivotal preoperative intervention for EC 
has been extensively employed in the field, effectively 
restoring atypical endometrial hyperplasia to nor-
mal endometrial tissue [82], mitigating the risk of EC, 
and enhancing the prognosis of patients with EC [83]. 
Moreover, mitochondrial HK2 governs glycolysis and 
regulates levels of reactive oxygen species (ROS), while 
also participating in Ca2+ signaling and homeostasis 
to effectively regulate the energetic survival of cellular 
organisms [84]. However, the comprehension of HK2 
in EC remains limited. Herein, we employed qRT-PCR 
and WB techniques to validate the robust expression of 
HK2 in EC tissues. The suppression of HK2 effectively 
attenuated the proliferation, migration, and invasion of 
EC cells. The prognostic analysis revealed a significant 
positive correlation between elevated HK2 expression 
levels and unfavorable patient outcomes. Our study 
suggests that HK2 can serve as a reliable biomarker for 
the diagnosis and prognostic prediction of EC, while 
targeted regulation of HK2 holds promising potential 
as a therapeutic intervention for managing EC.

Although there have been published articles specifi-
cally examining the prognostic characteristics of EC [85], 
their focus has been exclusively limited to one aspect of 
metabolism. The present study constitutes the initial 
endeavor to integrate genes linked with glycometabo-
lism and lipid metabolism. Nevertheless, it is necessary 
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to delineate the existing limitations within this study. 
The accuracy of the GLRG-related risk model in predict-
ing prognosis has been validated using the TCGA data-
base; however, further collection of EC samples, external 
independent datasets, and extensive prospective clini-
cal analysis are necessary to validate the effectiveness 
and utility of the GLRG-related signature and biomark-
ers in clinical applications. The correlation between the 
GLRG-signature and drug susceptibility necessitates 
further validation through clinical trials and molecular 
biology experiments. Other clinical factors, such as lym-
phovascular space invasion (LVSI), have been identified 
as significant prognostic indicators in EC. However, due 
to limited data availability, the inclusion of LVSI in this 
study is currently unfeasible. Additionally, the underlying 
mechanism through which HK2 facilitates EC progres-
sion remains elusive, and our study has solely undergone 
experimental validation in vitro. A comprehensive under-
standing of the potential mechanism of HK2 necessitates 
extensive exploration and experimentation in vivo.
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